AnonymousCS's picture
End of training
f1999c5 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: populism_classifier_bsample_027
    results: []

populism_classifier_bsample_027

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6278
  • Accuracy: 0.8051
  • 1-f1: 0.3155
  • 1-recall: 0.9414
  • 1-precision: 0.1895
  • Balanced Acc: 0.8698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy 1-f1 1-recall 1-precision Balanced Acc
0.1822 1.0 167 1.1261 0.5216 0.1655 0.9940 0.0903 0.7460
0.0917 2.0 334 0.6039 0.7504 0.2638 0.9368 0.1535 0.8389
0.118 3.0 501 0.6889 0.7300 0.2539 0.9624 0.1462 0.8404
0.3814 4.0 668 0.4434 0.8794 0.3885 0.8030 0.2562 0.8431
0.0625 5.0 835 0.6553 0.8022 0.3086 0.9248 0.1852 0.8604
0.0409 6.0 1002 0.6278 0.8051 0.3155 0.9414 0.1895 0.8698

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3