xlmr_immigration_combo18_4
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2112
- Accuracy: 0.9396
- 1-f1: 0.9054
- 1-recall: 0.8687
- 1-precision: 0.9454
- Balanced Acc: 0.9218
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
---|---|---|---|---|---|---|---|---|
0.1675 | 1.0 | 25 | 0.1841 | 0.9409 | 0.908 | 0.8764 | 0.9419 | 0.9247 |
0.17 | 2.0 | 50 | 0.2058 | 0.9280 | 0.8931 | 0.9035 | 0.8830 | 0.9219 |
0.1196 | 3.0 | 75 | 0.2112 | 0.9396 | 0.9054 | 0.8687 | 0.9454 | 0.9218 |
Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 7
Model tree for AnonymousCS/xlmr_immigration_combo18_4
Base model
FacebookAI/xlm-roberta-large