xlmr_immigration_combo27_0
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2796
- Accuracy: 0.9036
- 1-f1: 0.8593
- 1-recall: 0.8842
- 1-precision: 0.8358
- Balanced Acc: 0.8987
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
---|---|---|---|---|---|---|---|---|
0.6197 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
0.2403 | 2.0 | 50 | 0.2640 | 0.9113 | 0.8634 | 0.8417 | 0.8862 | 0.8939 |
0.2432 | 3.0 | 75 | 0.2184 | 0.9152 | 0.8685 | 0.8417 | 0.8971 | 0.8968 |
0.3089 | 4.0 | 100 | 0.2378 | 0.9100 | 0.8638 | 0.8571 | 0.8706 | 0.8968 |
0.2386 | 5.0 | 125 | 0.2796 | 0.9036 | 0.8593 | 0.8842 | 0.8358 | 0.8987 |
Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 8
Model tree for AnonymousCS/xlmr_immigration_combo27_0
Base model
FacebookAI/xlm-roberta-large