xlmr_immigration_combo28_0
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2677
- Accuracy: 0.9036
- 1-f1: 0.8491
- 1-recall: 0.8147
- 1-precision: 0.8866
- Balanced Acc: 0.8813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
---|---|---|---|---|---|---|---|---|
0.6238 | 1.0 | 25 | 0.6050 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
0.395 | 2.0 | 50 | 0.3530 | 0.8985 | 0.8308 | 0.7490 | 0.9327 | 0.8610 |
0.2556 | 3.0 | 75 | 0.2584 | 0.9049 | 0.8496 | 0.8069 | 0.8970 | 0.8804 |
0.2734 | 4.0 | 100 | 0.2496 | 0.9075 | 0.8588 | 0.8456 | 0.8725 | 0.8920 |
0.2439 | 5.0 | 125 | 0.2537 | 0.8997 | 0.8446 | 0.8185 | 0.8724 | 0.8794 |
0.1877 | 6.0 | 150 | 0.2677 | 0.9036 | 0.8491 | 0.8147 | 0.8866 | 0.8813 |
Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 8
Model tree for AnonymousCS/xlmr_immigration_combo28_0
Base model
FacebookAI/xlm-roberta-large