wav2vec2-large-mms-1b-thai-colab

This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2452
  • Wer: 0.7234

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.0794 0.17 100 0.3832 0.8329
0.561 0.33 200 0.3162 0.8099
0.5132 0.5 300 0.2907 0.7842
0.5015 0.66 400 0.2954 0.7998
0.5126 0.83 500 0.2812 0.7924
0.5182 0.99 600 0.2782 0.7631
0.4459 1.16 700 0.2735 0.7526
0.4694 1.32 800 0.2716 0.7628
0.4576 1.49 900 0.2649 0.7538
0.4749 1.65 1000 0.2614 0.7503
0.4282 1.82 1100 0.2687 0.7464
0.4009 1.98 1200 0.2622 0.7480
0.3976 2.15 1300 0.2619 0.7421
0.4306 2.31 1400 0.2620 0.7538
0.4413 2.48 1500 0.2551 0.7515
0.3888 2.64 1600 0.2545 0.7339
0.4213 2.81 1700 0.2541 0.7316
0.3945 2.98 1800 0.2507 0.7246
0.3765 3.14 1900 0.2495 0.7234
0.3859 3.31 2000 0.2498 0.7269
0.3931 3.47 2100 0.2469 0.7250
0.3737 3.64 2200 0.2470 0.7242
0.3716 3.8 2300 0.2454 0.7219
0.3582 3.97 2400 0.2452 0.7234

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Aomsin/wav2vec2-large-mms-1b-thai-colab

Finetuned
(245)
this model

Evaluation results