Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Arash Nicoomanesh
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: google/gemma-2b-it

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

model = Gemma2ForCausalLM.from_pretrained( # Changed here base_model, quantization_config=bnb_config, device_map="auto", attn_implementation=attn_implementation )

tokenizer = GemmaTokenizerFast.from_pretrained(base_model, padding_side="right", truncation_side="right", trust_remote_code=True)

Preprocessing [optional]

dataset = load_dataset(dataset_name, split="all", cache_dir="./cache") dataset = dataset.shuffle(seed=42).select(range(3000)) # Use 3k samples for a better demo

Define a cleaning function to remove unwanted artifacts

def clean_text(text): # Remove URLs and any "Chat Doctor" or similar phrases text = re.sub(r'\b(?:www.[^\s]+|http\S+)', '', text) # Remove URLs text = re.sub(r'\b(?:Chat Doctor(?:.com)?(?:.in)?|www.(?:google|yahoo)\S*)', '', text) # Remove site names text = re.sub(r'\s+', ' ', text) # Collapse multiple spaces return text.strip()

Training Hyperparameters

training_args = TrainingArguments( output_dir=new_model, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=2, optim="paged_adamw_32bit", num_train_epochs=1, eval_strategy="steps", eval_steps=200, save_steps=500, # Keep save_steps as 500 logging_steps=1, warmup_steps=10, logging_strategy="steps", learning_rate=2e-4, fp16=True, bf16=False, group_by_length=True, report_to="wandb", load_best_model_at_end=False # Disable loading best model at the end )

Trainer with early stopping callback

trainer = SFTTrainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["test"], peft_config=peft_config, max_seq_length=512, dataset_text_field="text", # Specify the text field in your dataset tokenizer=tokenizer, args=training_args, packing=False, )

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

View run noble-hill-29 at: https://wandb.ai/anicomanesh/Fine-tune%20Gemma-2-2b-it%20on%20Medical%20Dataset/runs/06xd9vvz wandb: ⭐️ View project at: https://wandb.ai/anicomanesh/Fine-tune%20Gemma-2-2b-it%20on%20Medical%20Dat

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
16
Safetensors
Model size
2.61B params
Tensor type
FP16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Arnic/Gemma-2-2b-it-chat-medicare

Base model

google/gemma-2-2b
Finetuned
(549)
this model
Quantizations
1 model

Dataset used to train Arnic/Gemma-2-2b-it-chat-medicare