EfficientNet-B0 for Satellite Image Classification

Model Description

This model uses EfficientNet-B0 for classifying 45 land-use categories from the NWPU-RESISC45 dataset. Transfer learning and fine-tuning techniques were applied.

Dataset

Metrics

  • Accuracy: ~84.4% on test set

Intended Use

  • Land-use classification from satellite imagery
  • Educational or research purposes

Limitations

  • Only trained on NWPU-RESISC45, may not generalize to other datasets
  • Not intended for production-critical tasks

Example Usage

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np

model = load_model("model_weights.h5")
img = image.load_img("example.jpg", target_size=(224,224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)/255.0
pred = model.predict(x)
pred_class = np.argmax(pred, axis=1)
print(f"Predicted class: {pred_class}")
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Arshul26/Efficientnet-B0

Adapter
(1)
this model

Dataset used to train Arshul26/Efficientnet-B0