hist-l2_tenK_finetune-itemseg_v9
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 30.0797
- Accuracy: 0.9452
- Macro F1: 0.9401
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 7477
- training_steps: 74775
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
3.3204 | 0.0050 | 373 | 35.5777 | 0.2910 | 0.0560 |
2.9919 | 1.0050 | 746 | 35.2845 | 0.3834 | 0.0801 |
2.8005 | 2.0050 | 1119 | 35.1272 | 0.4028 | 0.0895 |
2.5893 | 3.0049 | 1492 | 34.8641 | 0.4652 | 0.1150 |
2.5367 | 4.0049 | 1865 | 34.7028 | 0.5061 | 0.1248 |
2.4497 | 5.0049 | 2238 | 34.6290 | 0.5209 | 0.1349 |
2.3947 | 6.0049 | 2611 | 34.4605 | 0.5770 | 0.1616 |
2.2024 | 7.0049 | 2984 | 34.3384 | 0.6018 | 0.1888 |
1.9885 | 8.0049 | 3357 | 34.1500 | 0.6413 | 0.2395 |
1.8094 | 9.0049 | 3730 | 34.0592 | 0.6566 | 0.2894 |
1.8758 | 10.0049 | 4103 | 33.8544 | 0.7156 | 0.3499 |
1.6137 | 11.0048 | 4476 | 33.7209 | 0.7340 | 0.3991 |
1.4809 | 12.0048 | 4849 | 33.6789 | 0.7495 | 0.4356 |
1.5602 | 13.0048 | 5222 | 33.5163 | 0.7738 | 0.4847 |
1.4096 | 14.0048 | 5595 | 33.4063 | 0.7812 | 0.5035 |
1.3791 | 15.0048 | 5968 | 33.2649 | 0.8013 | 0.5422 |
1.3647 | 16.0048 | 6341 | 33.1827 | 0.8157 | 0.5728 |
1.2477 | 17.0048 | 6714 | 33.1244 | 0.8164 | 0.5901 |
1.2492 | 18.0047 | 7087 | 32.9853 | 0.8339 | 0.6098 |
1.199 | 19.0047 | 7460 | 32.8985 | 0.8246 | 0.6202 |
1.1552 | 20.0047 | 7833 | 32.8290 | 0.8468 | 0.6431 |
1.1178 | 21.0047 | 8206 | 32.6965 | 0.8501 | 0.6550 |
1.0551 | 22.0047 | 8579 | 32.6283 | 0.8507 | 0.6594 |
1.0005 | 23.0047 | 8952 | 32.5718 | 0.8592 | 0.6779 |
0.9994 | 24.0047 | 9325 | 32.4964 | 0.8652 | 0.6904 |
0.9343 | 25.0047 | 9698 | 32.4118 | 0.8683 | 0.7172 |
0.9223 | 26.0046 | 10071 | 32.4083 | 0.8631 | 0.7049 |
0.94 | 27.0046 | 10444 | 32.3562 | 0.8838 | 0.7175 |
0.8796 | 28.0046 | 10817 | 32.2513 | 0.8890 | 0.7276 |
0.8566 | 29.0046 | 11190 | 32.1818 | 0.8896 | 0.7261 |
0.8536 | 30.0046 | 11563 | 32.1475 | 0.8909 | 0.7394 |
0.8271 | 31.0046 | 11936 | 32.1000 | 0.8859 | 0.7566 |
0.8385 | 32.0046 | 12309 | 32.0268 | 0.8981 | 0.7867 |
0.8312 | 33.0045 | 12682 | 31.9795 | 0.9038 | 0.7802 |
0.8138 | 34.0045 | 13055 | 31.9209 | 0.9071 | 0.8038 |
0.8094 | 35.0045 | 13428 | 31.8696 | 0.9113 | 0.7801 |
0.831 | 36.0045 | 13801 | 31.8666 | 0.9107 | 0.7840 |
0.8875 | 37.0045 | 14174 | 31.8027 | 0.9098 | 0.7938 |
0.8024 | 38.0045 | 14547 | 31.7494 | 0.9154 | 0.8014 |
0.825 | 39.0045 | 14920 | 31.7010 | 0.9105 | 0.8029 |
0.8104 | 40.0045 | 15293 | 31.6897 | 0.9023 | 0.8220 |
0.7797 | 41.0044 | 15666 | 31.6302 | 0.9077 | 0.8150 |
0.7959 | 42.0044 | 16039 | 31.5812 | 0.9093 | 0.8227 |
0.7812 | 43.0044 | 16412 | 31.5688 | 0.9067 | 0.8219 |
0.7902 | 44.0044 | 16785 | 31.5217 | 0.9166 | 0.8151 |
0.7795 | 45.0044 | 17158 | 31.4536 | 0.9163 | 0.8190 |
0.8003 | 46.0044 | 17531 | 31.4451 | 0.9188 | 0.8212 |
0.7552 | 47.0044 | 17904 | 31.3800 | 0.9137 | 0.8436 |
0.7854 | 48.0043 | 18277 | 31.3036 | 0.9298 | 0.8402 |
0.7506 | 49.0043 | 18650 | 31.3603 | 0.9315 | 0.8354 |
0.8699 | 50.0043 | 19023 | 31.3006 | 0.9327 | 0.8318 |
0.7541 | 51.0043 | 19396 | 31.2755 | 0.9278 | 0.8394 |
0.8152 | 52.0043 | 19769 | 31.2666 | 0.9198 | 0.8656 |
0.7447 | 53.0043 | 20142 | 31.1644 | 0.9352 | 0.8525 |
0.8262 | 54.0043 | 20515 | 31.1528 | 0.9349 | 0.8429 |
0.7308 | 55.0043 | 20888 | 31.1659 | 0.9271 | 0.8490 |
0.7403 | 56.0042 | 21261 | 31.1045 | 0.9343 | 0.8397 |
0.7469 | 57.0042 | 21634 | 31.0692 | 0.9379 | 0.8469 |
0.7251 | 58.0042 | 22007 | 31.0146 | 0.9349 | 0.8530 |
0.7375 | 59.0042 | 22380 | 31.0354 | 0.9336 | 0.8538 |
0.7279 | 60.0042 | 22753 | 30.9804 | 0.9329 | 0.8715 |
0.7484 | 61.0042 | 23126 | 30.9869 | 0.9369 | 0.8495 |
0.7297 | 62.0042 | 23499 | 30.9263 | 0.9400 | 0.8566 |
0.7477 | 63.0041 | 23872 | 30.8964 | 0.9419 | 0.8613 |
0.7379 | 64.0041 | 24245 | 30.8940 | 0.9353 | 0.8572 |
0.9224 | 65.0041 | 24618 | 30.8494 | 0.9349 | 0.8547 |
0.7366 | 66.0041 | 24991 | 30.8112 | 0.9378 | 0.8630 |
0.7341 | 67.0041 | 25364 | 30.8354 | 0.9356 | 0.8623 |
0.73 | 68.0041 | 25737 | 30.8367 | 0.9324 | 0.8671 |
0.7735 | 69.0041 | 26110 | 30.7886 | 0.9338 | 0.8662 |
0.7282 | 70.0041 | 26483 | 30.7990 | 0.9170 | 0.8490 |
0.7243 | 71.0040 | 26856 | 30.6740 | 0.9353 | 0.8981 |
0.7302 | 72.0040 | 27229 | 30.6913 | 0.9396 | 0.8821 |
0.7303 | 73.0040 | 27602 | 30.6730 | 0.9235 | 0.8972 |
0.7242 | 74.0040 | 27975 | 30.6560 | 0.9366 | 0.8790 |
0.7266 | 75.0040 | 28348 | 30.6015 | 0.9331 | 0.8940 |
0.718 | 76.0040 | 28721 | 30.6204 | 0.9229 | 0.9059 |
0.7247 | 77.0040 | 29094 | 30.5747 | 0.9353 | 0.8892 |
0.7718 | 78.0039 | 29467 | 30.5780 | 0.9369 | 0.9018 |
0.7816 | 79.0039 | 29840 | 30.5818 | 0.9238 | 0.9056 |
0.7416 | 80.0039 | 30213 | 30.5578 | 0.9312 | 0.8931 |
0.7707 | 81.0039 | 30586 | 30.6160 | 0.9046 | 0.8950 |
0.7942 | 82.0039 | 30959 | 30.5498 | 0.9237 | 0.9035 |
0.7537 | 83.0039 | 31332 | 30.5228 | 0.9343 | 0.9067 |
0.8531 | 84.0039 | 31705 | 30.5133 | 0.9287 | 0.9115 |
0.724 | 85.0039 | 32078 | 30.4458 | 0.9384 | 0.9101 |
0.7119 | 86.0038 | 32451 | 30.4319 | 0.9299 | 0.8988 |
0.7389 | 87.0038 | 32824 | 30.4093 | 0.9443 | 0.9183 |
0.7158 | 88.0038 | 33197 | 30.4406 | 0.9264 | 0.9139 |
0.7075 | 89.0038 | 33570 | 30.4394 | 0.9311 | 0.9106 |
0.7164 | 90.0038 | 33943 | 30.3753 | 0.9471 | 0.8939 |
0.7049 | 91.0038 | 34316 | 30.3673 | 0.9439 | 0.9079 |
0.7062 | 92.0038 | 34689 | 30.3602 | 0.9433 | 0.8959 |
0.7214 | 93.0037 | 35062 | 30.4061 | 0.9354 | 0.9162 |
0.7035 | 94.0037 | 35435 | 30.3311 | 0.9496 | 0.9163 |
0.7097 | 95.0037 | 35808 | 30.3786 | 0.9327 | 0.9150 |
0.706 | 96.0037 | 36181 | 30.3342 | 0.9513 | 0.9070 |
0.7048 | 97.0037 | 36554 | 30.3522 | 0.9464 | 0.8939 |
0.7064 | 98.0037 | 36927 | 30.3285 | 0.9376 | 0.9049 |
0.7108 | 99.0037 | 37300 | 30.3779 | 0.9341 | 0.9136 |
0.7045 | 100.0037 | 37673 | 30.2899 | 0.9428 | 0.9136 |
0.7046 | 101.0036 | 38046 | 30.3061 | 0.9372 | 0.8991 |
0.7031 | 102.0036 | 38419 | 30.2602 | 0.9470 | 0.9107 |
0.714 | 103.0036 | 38792 | 30.2532 | 0.9406 | 0.9078 |
0.7008 | 104.0036 | 39165 | 30.2654 | 0.9518 | 0.9008 |
0.7046 | 105.0036 | 39538 | 30.3206 | 0.9411 | 0.9157 |
0.7067 | 106.0036 | 39911 | 30.2335 | 0.9482 | 0.9182 |
0.7116 | 107.0036 | 40284 | 30.2195 | 0.9446 | 0.9042 |
0.709 | 108.0035 | 40657 | 30.2665 | 0.9317 | 0.9008 |
0.7083 | 109.0035 | 41030 | 30.2031 | 0.9449 | 0.9198 |
0.7172 | 110.0035 | 41403 | 30.1820 | 0.9494 | 0.9037 |
0.7056 | 111.0035 | 41776 | 30.1901 | 0.9457 | 0.9215 |
0.7505 | 112.0035 | 42149 | 30.1998 | 0.9408 | 0.9000 |
0.7077 | 113.0035 | 42522 | 30.1639 | 0.9448 | 0.9170 |
0.7452 | 114.0035 | 42895 | 30.2123 | 0.9365 | 0.9129 |
0.7067 | 115.0035 | 43268 | 30.1726 | 0.9417 | 0.9120 |
0.7057 | 116.0034 | 43641 | 30.1480 | 0.9474 | 0.9101 |
0.7047 | 117.0034 | 44014 | 30.1211 | 0.9501 | 0.9161 |
0.7088 | 118.0034 | 44387 | 30.1850 | 0.9301 | 0.9184 |
0.7146 | 119.0034 | 44760 | 30.1403 | 0.9376 | 0.9164 |
0.7048 | 120.0034 | 45133 | 30.1495 | 0.9454 | 0.9324 |
0.703 | 121.0034 | 45506 | 30.1554 | 0.9376 | 0.9178 |
0.7074 | 122.0034 | 45879 | 30.1711 | 0.9377 | 0.9235 |
0.7027 | 123.0033 | 46252 | 30.1800 | 0.9347 | 0.9188 |
0.7262 | 124.0033 | 46625 | 30.2160 | 0.9282 | 0.9238 |
0.703 | 125.0033 | 46998 | 30.1370 | 0.9389 | 0.9255 |
0.7111 | 126.0033 | 47371 | 30.1535 | 0.9408 | 0.9289 |
0.7182 | 127.0033 | 47744 | 30.1792 | 0.9323 | 0.9117 |
0.7178 | 128.0033 | 48117 | 30.0683 | 0.9455 | 0.9251 |
0.7323 | 129.0033 | 48490 | 30.0664 | 0.9417 | 0.9329 |
0.7155 | 130.0032 | 48863 | 30.1346 | 0.9344 | 0.9234 |
0.6988 | 131.0032 | 49236 | 30.1241 | 0.9330 | 0.9376 |
0.7156 | 132.0032 | 49609 | 30.0784 | 0.9452 | 0.9401 |
0.7025 | 133.0032 | 49982 | 30.0397 | 0.9502 | 0.9284 |
0.6999 | 134.0032 | 50355 | 30.1191 | 0.9325 | 0.9308 |
0.7008 | 135.0032 | 50728 | 30.0423 | 0.9498 | 0.9365 |
0.6983 | 136.0032 | 51101 | 30.0453 | 0.9455 | 0.9275 |
0.7005 | 137.0032 | 51474 | 30.0937 | 0.9376 | 0.9242 |
0.7115 | 138.0031 | 51847 | 30.0198 | 0.9489 | 0.9226 |
0.699 | 139.0031 | 52220 | 30.0654 | 0.9410 | 0.9303 |
0.715 | 140.0031 | 52593 | 30.0809 | 0.9366 | 0.9342 |
0.7514 | 141.0031 | 52966 | 30.0494 | 0.9387 | 0.9322 |
0.7606 | 142.0031 | 53339 | 30.0488 | 0.9345 | 0.9306 |
0.7063 | 143.0031 | 53712 | 30.0311 | 0.9353 | 0.9252 |
0.7062 | 144.0031 | 54085 | 30.0138 | 0.9410 | 0.9278 |
0.697 | 145.0030 | 54458 | 30.0378 | 0.9366 | 0.9283 |
0.7107 | 146.0030 | 54831 | 30.0008 | 0.9418 | 0.9314 |
0.771 | 147.0030 | 55204 | 30.0554 | 0.9353 | 0.9278 |
0.6927 | 148.0030 | 55577 | 30.0387 | 0.9337 | 0.9263 |
0.6933 | 149.0030 | 55950 | 30.0187 | 0.9424 | 0.9328 |
0.6934 | 150.0030 | 56323 | 29.9749 | 0.9463 | 0.9358 |
0.6935 | 151.0030 | 56696 | 30.0122 | 0.9378 | 0.9342 |
0.6916 | 152.0030 | 57069 | 30.0206 | 0.9400 | 0.9350 |
0.693 | 153.0029 | 57442 | 30.0004 | 0.9450 | 0.9354 |
0.6932 | 154.0029 | 57815 | 30.0045 | 0.9346 | 0.9338 |
0.695 | 155.0029 | 58188 | 29.9917 | 0.9380 | 0.9326 |
0.6946 | 156.0029 | 58561 | 29.9946 | 0.9370 | 0.9348 |
0.6931 | 157.0029 | 58934 | 29.9609 | 0.9451 | 0.9378 |
0.6951 | 158.0029 | 59307 | 30.0012 | 0.9343 | 0.9344 |
0.6925 | 159.0029 | 59680 | 30.0255 | 0.9347 | 0.9261 |
0.6958 | 160.0028 | 60053 | 30.0111 | 0.9316 | 0.9292 |
0.6929 | 161.0028 | 60426 | 30.0227 | 0.9353 | 0.9294 |
0.6927 | 162.0028 | 60799 | 29.9590 | 0.9480 | 0.9342 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.