hist-l2_tenK_finetune-itemseg_v9

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 30.0797
  • Accuracy: 0.9452
  • Macro F1: 0.9401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 7477
  • training_steps: 74775

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
3.3204 0.0050 373 35.5777 0.2910 0.0560
2.9919 1.0050 746 35.2845 0.3834 0.0801
2.8005 2.0050 1119 35.1272 0.4028 0.0895
2.5893 3.0049 1492 34.8641 0.4652 0.1150
2.5367 4.0049 1865 34.7028 0.5061 0.1248
2.4497 5.0049 2238 34.6290 0.5209 0.1349
2.3947 6.0049 2611 34.4605 0.5770 0.1616
2.2024 7.0049 2984 34.3384 0.6018 0.1888
1.9885 8.0049 3357 34.1500 0.6413 0.2395
1.8094 9.0049 3730 34.0592 0.6566 0.2894
1.8758 10.0049 4103 33.8544 0.7156 0.3499
1.6137 11.0048 4476 33.7209 0.7340 0.3991
1.4809 12.0048 4849 33.6789 0.7495 0.4356
1.5602 13.0048 5222 33.5163 0.7738 0.4847
1.4096 14.0048 5595 33.4063 0.7812 0.5035
1.3791 15.0048 5968 33.2649 0.8013 0.5422
1.3647 16.0048 6341 33.1827 0.8157 0.5728
1.2477 17.0048 6714 33.1244 0.8164 0.5901
1.2492 18.0047 7087 32.9853 0.8339 0.6098
1.199 19.0047 7460 32.8985 0.8246 0.6202
1.1552 20.0047 7833 32.8290 0.8468 0.6431
1.1178 21.0047 8206 32.6965 0.8501 0.6550
1.0551 22.0047 8579 32.6283 0.8507 0.6594
1.0005 23.0047 8952 32.5718 0.8592 0.6779
0.9994 24.0047 9325 32.4964 0.8652 0.6904
0.9343 25.0047 9698 32.4118 0.8683 0.7172
0.9223 26.0046 10071 32.4083 0.8631 0.7049
0.94 27.0046 10444 32.3562 0.8838 0.7175
0.8796 28.0046 10817 32.2513 0.8890 0.7276
0.8566 29.0046 11190 32.1818 0.8896 0.7261
0.8536 30.0046 11563 32.1475 0.8909 0.7394
0.8271 31.0046 11936 32.1000 0.8859 0.7566
0.8385 32.0046 12309 32.0268 0.8981 0.7867
0.8312 33.0045 12682 31.9795 0.9038 0.7802
0.8138 34.0045 13055 31.9209 0.9071 0.8038
0.8094 35.0045 13428 31.8696 0.9113 0.7801
0.831 36.0045 13801 31.8666 0.9107 0.7840
0.8875 37.0045 14174 31.8027 0.9098 0.7938
0.8024 38.0045 14547 31.7494 0.9154 0.8014
0.825 39.0045 14920 31.7010 0.9105 0.8029
0.8104 40.0045 15293 31.6897 0.9023 0.8220
0.7797 41.0044 15666 31.6302 0.9077 0.8150
0.7959 42.0044 16039 31.5812 0.9093 0.8227
0.7812 43.0044 16412 31.5688 0.9067 0.8219
0.7902 44.0044 16785 31.5217 0.9166 0.8151
0.7795 45.0044 17158 31.4536 0.9163 0.8190
0.8003 46.0044 17531 31.4451 0.9188 0.8212
0.7552 47.0044 17904 31.3800 0.9137 0.8436
0.7854 48.0043 18277 31.3036 0.9298 0.8402
0.7506 49.0043 18650 31.3603 0.9315 0.8354
0.8699 50.0043 19023 31.3006 0.9327 0.8318
0.7541 51.0043 19396 31.2755 0.9278 0.8394
0.8152 52.0043 19769 31.2666 0.9198 0.8656
0.7447 53.0043 20142 31.1644 0.9352 0.8525
0.8262 54.0043 20515 31.1528 0.9349 0.8429
0.7308 55.0043 20888 31.1659 0.9271 0.8490
0.7403 56.0042 21261 31.1045 0.9343 0.8397
0.7469 57.0042 21634 31.0692 0.9379 0.8469
0.7251 58.0042 22007 31.0146 0.9349 0.8530
0.7375 59.0042 22380 31.0354 0.9336 0.8538
0.7279 60.0042 22753 30.9804 0.9329 0.8715
0.7484 61.0042 23126 30.9869 0.9369 0.8495
0.7297 62.0042 23499 30.9263 0.9400 0.8566
0.7477 63.0041 23872 30.8964 0.9419 0.8613
0.7379 64.0041 24245 30.8940 0.9353 0.8572
0.9224 65.0041 24618 30.8494 0.9349 0.8547
0.7366 66.0041 24991 30.8112 0.9378 0.8630
0.7341 67.0041 25364 30.8354 0.9356 0.8623
0.73 68.0041 25737 30.8367 0.9324 0.8671
0.7735 69.0041 26110 30.7886 0.9338 0.8662
0.7282 70.0041 26483 30.7990 0.9170 0.8490
0.7243 71.0040 26856 30.6740 0.9353 0.8981
0.7302 72.0040 27229 30.6913 0.9396 0.8821
0.7303 73.0040 27602 30.6730 0.9235 0.8972
0.7242 74.0040 27975 30.6560 0.9366 0.8790
0.7266 75.0040 28348 30.6015 0.9331 0.8940
0.718 76.0040 28721 30.6204 0.9229 0.9059
0.7247 77.0040 29094 30.5747 0.9353 0.8892
0.7718 78.0039 29467 30.5780 0.9369 0.9018
0.7816 79.0039 29840 30.5818 0.9238 0.9056
0.7416 80.0039 30213 30.5578 0.9312 0.8931
0.7707 81.0039 30586 30.6160 0.9046 0.8950
0.7942 82.0039 30959 30.5498 0.9237 0.9035
0.7537 83.0039 31332 30.5228 0.9343 0.9067
0.8531 84.0039 31705 30.5133 0.9287 0.9115
0.724 85.0039 32078 30.4458 0.9384 0.9101
0.7119 86.0038 32451 30.4319 0.9299 0.8988
0.7389 87.0038 32824 30.4093 0.9443 0.9183
0.7158 88.0038 33197 30.4406 0.9264 0.9139
0.7075 89.0038 33570 30.4394 0.9311 0.9106
0.7164 90.0038 33943 30.3753 0.9471 0.8939
0.7049 91.0038 34316 30.3673 0.9439 0.9079
0.7062 92.0038 34689 30.3602 0.9433 0.8959
0.7214 93.0037 35062 30.4061 0.9354 0.9162
0.7035 94.0037 35435 30.3311 0.9496 0.9163
0.7097 95.0037 35808 30.3786 0.9327 0.9150
0.706 96.0037 36181 30.3342 0.9513 0.9070
0.7048 97.0037 36554 30.3522 0.9464 0.8939
0.7064 98.0037 36927 30.3285 0.9376 0.9049
0.7108 99.0037 37300 30.3779 0.9341 0.9136
0.7045 100.0037 37673 30.2899 0.9428 0.9136
0.7046 101.0036 38046 30.3061 0.9372 0.8991
0.7031 102.0036 38419 30.2602 0.9470 0.9107
0.714 103.0036 38792 30.2532 0.9406 0.9078
0.7008 104.0036 39165 30.2654 0.9518 0.9008
0.7046 105.0036 39538 30.3206 0.9411 0.9157
0.7067 106.0036 39911 30.2335 0.9482 0.9182
0.7116 107.0036 40284 30.2195 0.9446 0.9042
0.709 108.0035 40657 30.2665 0.9317 0.9008
0.7083 109.0035 41030 30.2031 0.9449 0.9198
0.7172 110.0035 41403 30.1820 0.9494 0.9037
0.7056 111.0035 41776 30.1901 0.9457 0.9215
0.7505 112.0035 42149 30.1998 0.9408 0.9000
0.7077 113.0035 42522 30.1639 0.9448 0.9170
0.7452 114.0035 42895 30.2123 0.9365 0.9129
0.7067 115.0035 43268 30.1726 0.9417 0.9120
0.7057 116.0034 43641 30.1480 0.9474 0.9101
0.7047 117.0034 44014 30.1211 0.9501 0.9161
0.7088 118.0034 44387 30.1850 0.9301 0.9184
0.7146 119.0034 44760 30.1403 0.9376 0.9164
0.7048 120.0034 45133 30.1495 0.9454 0.9324
0.703 121.0034 45506 30.1554 0.9376 0.9178
0.7074 122.0034 45879 30.1711 0.9377 0.9235
0.7027 123.0033 46252 30.1800 0.9347 0.9188
0.7262 124.0033 46625 30.2160 0.9282 0.9238
0.703 125.0033 46998 30.1370 0.9389 0.9255
0.7111 126.0033 47371 30.1535 0.9408 0.9289
0.7182 127.0033 47744 30.1792 0.9323 0.9117
0.7178 128.0033 48117 30.0683 0.9455 0.9251
0.7323 129.0033 48490 30.0664 0.9417 0.9329
0.7155 130.0032 48863 30.1346 0.9344 0.9234
0.6988 131.0032 49236 30.1241 0.9330 0.9376
0.7156 132.0032 49609 30.0784 0.9452 0.9401
0.7025 133.0032 49982 30.0397 0.9502 0.9284
0.6999 134.0032 50355 30.1191 0.9325 0.9308
0.7008 135.0032 50728 30.0423 0.9498 0.9365
0.6983 136.0032 51101 30.0453 0.9455 0.9275
0.7005 137.0032 51474 30.0937 0.9376 0.9242
0.7115 138.0031 51847 30.0198 0.9489 0.9226
0.699 139.0031 52220 30.0654 0.9410 0.9303
0.715 140.0031 52593 30.0809 0.9366 0.9342
0.7514 141.0031 52966 30.0494 0.9387 0.9322
0.7606 142.0031 53339 30.0488 0.9345 0.9306
0.7063 143.0031 53712 30.0311 0.9353 0.9252
0.7062 144.0031 54085 30.0138 0.9410 0.9278
0.697 145.0030 54458 30.0378 0.9366 0.9283
0.7107 146.0030 54831 30.0008 0.9418 0.9314
0.771 147.0030 55204 30.0554 0.9353 0.9278
0.6927 148.0030 55577 30.0387 0.9337 0.9263
0.6933 149.0030 55950 30.0187 0.9424 0.9328
0.6934 150.0030 56323 29.9749 0.9463 0.9358
0.6935 151.0030 56696 30.0122 0.9378 0.9342
0.6916 152.0030 57069 30.0206 0.9400 0.9350
0.693 153.0029 57442 30.0004 0.9450 0.9354
0.6932 154.0029 57815 30.0045 0.9346 0.9338
0.695 155.0029 58188 29.9917 0.9380 0.9326
0.6946 156.0029 58561 29.9946 0.9370 0.9348
0.6931 157.0029 58934 29.9609 0.9451 0.9378
0.6951 158.0029 59307 30.0012 0.9343 0.9344
0.6925 159.0029 59680 30.0255 0.9347 0.9261
0.6958 160.0028 60053 30.0111 0.9316 0.9292
0.6929 161.0028 60426 30.0227 0.9353 0.9294
0.6927 162.0028 60799 29.9590 0.9480 0.9342

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
7
Safetensors
Model size
31.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support