hist-l2_tenQ_finetune-itemseg_v8

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 32.7778
  • Accuracy: 0.9686
  • Macro F1: 0.9018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2995
  • training_steps: 29950

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
1.2685 0.0100 299 34.9748 0.6363 0.1697
1.026 1.0099 598 34.6751 0.6966 0.1965
0.8411 2.0099 897 34.4601 0.7365 0.2728
0.78 3.0099 1196 34.3536 0.7596 0.3707
0.7394 4.0098 1495 34.3028 0.7663 0.4627
0.653 5.0098 1794 34.2250 0.7856 0.5101
0.6215 6.0098 2093 34.1354 0.8090 0.5544
0.5732 7.0097 2392 34.0536 0.8292 0.5778
0.5133 8.0097 2691 33.9659 0.8470 0.6061
0.4579 9.0097 2990 33.9220 0.8545 0.6128
0.3896 10.0096 3289 33.8966 0.8537 0.6237
0.3351 11.0096 3588 33.8490 0.8648 0.6321
0.3423 12.0096 3887 33.7544 0.8908 0.6752
0.2804 13.0095 4186 33.7103 0.8972 0.6933
0.2438 14.0095 4485 33.6696 0.9030 0.7080
0.4695 15.0095 4784 33.6596 0.9002 0.7192
0.4444 16.0094 5083 33.6422 0.9031 0.7203
0.4388 17.0094 5382 33.5571 0.9228 0.7382
0.4175 18.0094 5681 33.5144 0.9273 0.7515
0.3967 19.0093 5980 33.4644 0.9338 0.7629
0.229 20.0093 6279 33.4337 0.9351 0.7675
0.2144 21.0093 6578 33.4054 0.9376 0.7568
0.1572 22.0092 6877 33.3489 0.9457 0.7761
0.1658 23.0092 7176 33.3164 0.9478 0.7820
0.1415 24.0092 7475 33.2885 0.9474 0.7835
0.0699 25.0091 7774 33.2516 0.9518 0.8032
0.0705 26.0091 8073 33.2352 0.9499 0.7887
0.0628 27.0091 8372 33.2109 0.9507 0.7950
0.0607 28.0090 8671 33.1872 0.9504 0.7981
0.0616 29.0090 8970 33.1532 0.9545 0.8082
0.0564 30.0090 9269 33.1544 0.9522 0.8191
0.0554 31.0089 9568 33.1144 0.9570 0.8193
0.0531 32.0089 9867 33.1014 0.9571 0.8239
0.0529 33.0089 10166 33.0896 0.9563 0.8263
0.0482 34.0088 10465 33.0666 0.9588 0.8342
0.0854 35.0088 10764 33.0391 0.9571 0.8405
0.0674 36.0088 11063 33.0381 0.9577 0.8404
0.0676 37.0087 11362 33.0198 0.9582 0.8454
0.0702 38.0087 11661 32.9992 0.9587 0.8485
0.0607 39.0087 11960 33.0109 0.9548 0.8464
0.0388 40.0086 12259 32.9839 0.9548 0.8437
0.0372 41.0086 12558 32.9556 0.9601 0.8460
0.0358 42.0086 12857 32.9679 0.9538 0.8452
0.0333 43.0085 13156 32.9179 0.9633 0.8592
0.0334 44.0085 13455 32.9477 0.9555 0.8592
0.0315 45.0085 13754 32.9154 0.9620 0.8674
0.0303 46.0084 14053 32.8858 0.9622 0.8639
0.028 47.0084 14352 32.8813 0.9656 0.8757
0.0277 48.0084 14651 32.8685 0.9670 0.8783
0.0252 49.0083 14950 32.8750 0.9634 0.8849
0.0267 50.0083 15249 32.8726 0.9630 0.8778
0.0273 51.0083 15548 32.8475 0.9661 0.8863
0.0275 52.0082 15847 32.8484 0.9632 0.8799
0.0241 53.0082 16146 32.8455 0.9664 0.8883
0.0222 54.0082 16445 32.8335 0.9666 0.8871
0.0271 55.0081 16744 32.8369 0.9644 0.8856
0.0253 56.0081 17043 32.8267 0.9660 0.8837
0.0238 57.0081 17342 32.8170 0.9678 0.8868
0.0239 58.0080 17641 32.8245 0.9646 0.8849
0.0211 59.0080 17940 32.8155 0.9671 0.8902
0.0178 60.0080 18239 32.8045 0.9682 0.8886
0.0201 61.0079 18538 32.7928 0.9684 0.8839
0.0295 62.0079 18837 32.8005 0.9666 0.8974
0.0189 63.0079 19136 32.7990 0.9667 0.8865
0.0196 64.0078 19435 32.7801 0.9708 0.9003
0.0165 65.0078 19734 32.7962 0.9677 0.8973
0.0161 66.0078 20033 32.7786 0.9691 0.8999
0.0149 67.0077 20332 32.7906 0.9681 0.8965
0.0142 68.0077 20631 32.7710 0.9690 0.8988
0.0145 69.0077 20930 32.7792 0.9693 0.8991
0.0155 70.0076 21229 32.7751 0.9689 0.8979
0.0138 71.0076 21528 32.7740 0.9693 0.8998
0.0131 72.0076 21827 32.7698 0.9692 0.9001
0.0139 73.0075 22126 32.7762 0.9692 0.9013
0.0137 74.0075 22425 32.7778 0.9686 0.9018
0.0134 75.0075 22724 32.7762 0.9686 0.9008
0.0136 76.0074 23023 32.7738 0.9690 0.8985
0.0123 77.0074 23322 32.7787 0.9689 0.8980
0.0129 78.0074 23621 32.7760 0.9686 0.8988
0.0115 79.0073 23920 32.7776 0.9690 0.8990
0.0128 80.0073 24219 32.7680 0.9696 0.8990
0.0146 81.0073 24518 32.7882 0.9681 0.8983
0.0134 82.0072 24817 32.7767 0.9684 0.8979
0.0133 83.0072 25116 32.7761 0.9696 0.8986
0.0123 84.0072 25415 32.7729 0.9695 0.9013
0.0119 85.0071 25714 32.7716 0.9698 0.8987
0.012 86.0071 26013 32.7734 0.9695 0.9003
0.0115 87.0071 26312 32.7738 0.9695 0.8983
0.0118 88.0070 26611 32.7687 0.9703 0.8985
0.0116 89.0070 26910 32.7742 0.9699 0.8993

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
0
Safetensors
Model size
31M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support