hist-l2_tenQ_finetune-itemseg_v8
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 32.7778
- Accuracy: 0.9686
- Macro F1: 0.9018
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2995
- training_steps: 29950
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
1.2685 | 0.0100 | 299 | 34.9748 | 0.6363 | 0.1697 |
1.026 | 1.0099 | 598 | 34.6751 | 0.6966 | 0.1965 |
0.8411 | 2.0099 | 897 | 34.4601 | 0.7365 | 0.2728 |
0.78 | 3.0099 | 1196 | 34.3536 | 0.7596 | 0.3707 |
0.7394 | 4.0098 | 1495 | 34.3028 | 0.7663 | 0.4627 |
0.653 | 5.0098 | 1794 | 34.2250 | 0.7856 | 0.5101 |
0.6215 | 6.0098 | 2093 | 34.1354 | 0.8090 | 0.5544 |
0.5732 | 7.0097 | 2392 | 34.0536 | 0.8292 | 0.5778 |
0.5133 | 8.0097 | 2691 | 33.9659 | 0.8470 | 0.6061 |
0.4579 | 9.0097 | 2990 | 33.9220 | 0.8545 | 0.6128 |
0.3896 | 10.0096 | 3289 | 33.8966 | 0.8537 | 0.6237 |
0.3351 | 11.0096 | 3588 | 33.8490 | 0.8648 | 0.6321 |
0.3423 | 12.0096 | 3887 | 33.7544 | 0.8908 | 0.6752 |
0.2804 | 13.0095 | 4186 | 33.7103 | 0.8972 | 0.6933 |
0.2438 | 14.0095 | 4485 | 33.6696 | 0.9030 | 0.7080 |
0.4695 | 15.0095 | 4784 | 33.6596 | 0.9002 | 0.7192 |
0.4444 | 16.0094 | 5083 | 33.6422 | 0.9031 | 0.7203 |
0.4388 | 17.0094 | 5382 | 33.5571 | 0.9228 | 0.7382 |
0.4175 | 18.0094 | 5681 | 33.5144 | 0.9273 | 0.7515 |
0.3967 | 19.0093 | 5980 | 33.4644 | 0.9338 | 0.7629 |
0.229 | 20.0093 | 6279 | 33.4337 | 0.9351 | 0.7675 |
0.2144 | 21.0093 | 6578 | 33.4054 | 0.9376 | 0.7568 |
0.1572 | 22.0092 | 6877 | 33.3489 | 0.9457 | 0.7761 |
0.1658 | 23.0092 | 7176 | 33.3164 | 0.9478 | 0.7820 |
0.1415 | 24.0092 | 7475 | 33.2885 | 0.9474 | 0.7835 |
0.0699 | 25.0091 | 7774 | 33.2516 | 0.9518 | 0.8032 |
0.0705 | 26.0091 | 8073 | 33.2352 | 0.9499 | 0.7887 |
0.0628 | 27.0091 | 8372 | 33.2109 | 0.9507 | 0.7950 |
0.0607 | 28.0090 | 8671 | 33.1872 | 0.9504 | 0.7981 |
0.0616 | 29.0090 | 8970 | 33.1532 | 0.9545 | 0.8082 |
0.0564 | 30.0090 | 9269 | 33.1544 | 0.9522 | 0.8191 |
0.0554 | 31.0089 | 9568 | 33.1144 | 0.9570 | 0.8193 |
0.0531 | 32.0089 | 9867 | 33.1014 | 0.9571 | 0.8239 |
0.0529 | 33.0089 | 10166 | 33.0896 | 0.9563 | 0.8263 |
0.0482 | 34.0088 | 10465 | 33.0666 | 0.9588 | 0.8342 |
0.0854 | 35.0088 | 10764 | 33.0391 | 0.9571 | 0.8405 |
0.0674 | 36.0088 | 11063 | 33.0381 | 0.9577 | 0.8404 |
0.0676 | 37.0087 | 11362 | 33.0198 | 0.9582 | 0.8454 |
0.0702 | 38.0087 | 11661 | 32.9992 | 0.9587 | 0.8485 |
0.0607 | 39.0087 | 11960 | 33.0109 | 0.9548 | 0.8464 |
0.0388 | 40.0086 | 12259 | 32.9839 | 0.9548 | 0.8437 |
0.0372 | 41.0086 | 12558 | 32.9556 | 0.9601 | 0.8460 |
0.0358 | 42.0086 | 12857 | 32.9679 | 0.9538 | 0.8452 |
0.0333 | 43.0085 | 13156 | 32.9179 | 0.9633 | 0.8592 |
0.0334 | 44.0085 | 13455 | 32.9477 | 0.9555 | 0.8592 |
0.0315 | 45.0085 | 13754 | 32.9154 | 0.9620 | 0.8674 |
0.0303 | 46.0084 | 14053 | 32.8858 | 0.9622 | 0.8639 |
0.028 | 47.0084 | 14352 | 32.8813 | 0.9656 | 0.8757 |
0.0277 | 48.0084 | 14651 | 32.8685 | 0.9670 | 0.8783 |
0.0252 | 49.0083 | 14950 | 32.8750 | 0.9634 | 0.8849 |
0.0267 | 50.0083 | 15249 | 32.8726 | 0.9630 | 0.8778 |
0.0273 | 51.0083 | 15548 | 32.8475 | 0.9661 | 0.8863 |
0.0275 | 52.0082 | 15847 | 32.8484 | 0.9632 | 0.8799 |
0.0241 | 53.0082 | 16146 | 32.8455 | 0.9664 | 0.8883 |
0.0222 | 54.0082 | 16445 | 32.8335 | 0.9666 | 0.8871 |
0.0271 | 55.0081 | 16744 | 32.8369 | 0.9644 | 0.8856 |
0.0253 | 56.0081 | 17043 | 32.8267 | 0.9660 | 0.8837 |
0.0238 | 57.0081 | 17342 | 32.8170 | 0.9678 | 0.8868 |
0.0239 | 58.0080 | 17641 | 32.8245 | 0.9646 | 0.8849 |
0.0211 | 59.0080 | 17940 | 32.8155 | 0.9671 | 0.8902 |
0.0178 | 60.0080 | 18239 | 32.8045 | 0.9682 | 0.8886 |
0.0201 | 61.0079 | 18538 | 32.7928 | 0.9684 | 0.8839 |
0.0295 | 62.0079 | 18837 | 32.8005 | 0.9666 | 0.8974 |
0.0189 | 63.0079 | 19136 | 32.7990 | 0.9667 | 0.8865 |
0.0196 | 64.0078 | 19435 | 32.7801 | 0.9708 | 0.9003 |
0.0165 | 65.0078 | 19734 | 32.7962 | 0.9677 | 0.8973 |
0.0161 | 66.0078 | 20033 | 32.7786 | 0.9691 | 0.8999 |
0.0149 | 67.0077 | 20332 | 32.7906 | 0.9681 | 0.8965 |
0.0142 | 68.0077 | 20631 | 32.7710 | 0.9690 | 0.8988 |
0.0145 | 69.0077 | 20930 | 32.7792 | 0.9693 | 0.8991 |
0.0155 | 70.0076 | 21229 | 32.7751 | 0.9689 | 0.8979 |
0.0138 | 71.0076 | 21528 | 32.7740 | 0.9693 | 0.8998 |
0.0131 | 72.0076 | 21827 | 32.7698 | 0.9692 | 0.9001 |
0.0139 | 73.0075 | 22126 | 32.7762 | 0.9692 | 0.9013 |
0.0137 | 74.0075 | 22425 | 32.7778 | 0.9686 | 0.9018 |
0.0134 | 75.0075 | 22724 | 32.7762 | 0.9686 | 0.9008 |
0.0136 | 76.0074 | 23023 | 32.7738 | 0.9690 | 0.8985 |
0.0123 | 77.0074 | 23322 | 32.7787 | 0.9689 | 0.8980 |
0.0129 | 78.0074 | 23621 | 32.7760 | 0.9686 | 0.8988 |
0.0115 | 79.0073 | 23920 | 32.7776 | 0.9690 | 0.8990 |
0.0128 | 80.0073 | 24219 | 32.7680 | 0.9696 | 0.8990 |
0.0146 | 81.0073 | 24518 | 32.7882 | 0.9681 | 0.8983 |
0.0134 | 82.0072 | 24817 | 32.7767 | 0.9684 | 0.8979 |
0.0133 | 83.0072 | 25116 | 32.7761 | 0.9696 | 0.8986 |
0.0123 | 84.0072 | 25415 | 32.7729 | 0.9695 | 0.9013 |
0.0119 | 85.0071 | 25714 | 32.7716 | 0.9698 | 0.8987 |
0.012 | 86.0071 | 26013 | 32.7734 | 0.9695 | 0.9003 |
0.0115 | 87.0071 | 26312 | 32.7738 | 0.9695 | 0.8983 |
0.0118 | 88.0070 | 26611 | 32.7687 | 0.9703 | 0.8985 |
0.0116 | 89.0070 | 26910 | 32.7742 | 0.9699 | 0.8993 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.