histv4_ftis_pretrain_tssp-smlm

This model is a fine-tuned version of Arthur-Tsai/histv4_pretrain_tssp-smlm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1632
  • Accuracy: 0.9363
  • Macro F1: 0.8424

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6731
  • training_steps: 134625

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
55.3894 0.0010 134 35.1324 0.0984 0.0386
18.918 1.0010 268 10.1671 0.2393 0.0602
8.5997 2.0010 402 7.6994 0.4769 0.1186
7.1174 3.0010 536 6.9546 0.5783 0.1517
6.2204 4.0010 670 5.7874 0.6025 0.1633
5.4044 5.0010 804 5.0189 0.6174 0.1677
5.4034 6.0010 938 4.6322 0.6239 0.1754
4.5241 7.0009 1072 4.1836 0.6375 0.1789
4.0434 8.0009 1206 3.6530 0.6487 0.1929
3.7176 9.0009 1340 3.0832 0.6448 0.1825
3.157 10.0009 1474 2.7375 0.6690 0.1988
2.9552 11.0009 1608 2.5801 0.6866 0.2334
2.701 12.0009 1742 2.3763 0.6942 0.2421
2.6541 13.0009 1876 2.2104 0.7097 0.2634
2.4742 14.0009 2010 2.2566 0.7047 0.2659
2.4582 15.0009 2144 2.1282 0.7252 0.3072
2.1877 16.0009 2278 2.1017 0.7319 0.3179
2.1537 17.0009 2412 2.0268 0.7361 0.3329
2.0021 18.0009 2546 1.9605 0.7479 0.3561
1.9491 19.0009 2680 1.8756 0.7546 0.3802
1.9159 20.0008 2814 1.7724 0.7650 0.4046
1.8062 21.0008 2948 1.7757 0.7744 0.4063
1.713 22.0008 3082 1.8805 0.7571 0.4120
1.6901 23.0008 3216 1.7198 0.7854 0.4417
1.6065 24.0008 3350 1.7338 0.7770 0.4449
1.6351 25.0008 3484 1.6711 0.7874 0.4570
1.5468 26.0008 3618 1.6827 0.7886 0.4569
1.4436 27.0008 3752 1.6055 0.7955 0.4648
1.3852 28.0008 3886 1.5738 0.8043 0.4968
1.3806 29.0008 4020 1.5726 0.8032 0.5033
1.3412 30.0008 4154 1.5599 0.8129 0.5217
1.2908 31.0008 4288 1.5065 0.8154 0.5289
1.2871 32.0008 4422 1.5368 0.8193 0.5313
1.1652 33.0008 4556 1.5389 0.8203 0.5497
1.1798 34.0007 4690 1.5526 0.8239 0.5460
1.0976 35.0007 4824 1.4046 0.8290 0.5637
1.1273 36.0007 4958 1.4097 0.8338 0.5728
1.0345 37.0007 5092 1.4208 0.8362 0.5806
1.026 38.0007 5226 1.4389 0.8296 0.5714
1.0661 39.0007 5360 1.4622 0.8374 0.5810
0.946 40.0007 5494 1.4262 0.8379 0.5954
0.9635 41.0007 5628 1.4241 0.8425 0.5907
0.9187 42.0007 5762 1.3810 0.8520 0.6056
0.9025 43.0007 5896 1.3077 0.8472 0.6140
0.8672 44.0007 6030 1.3554 0.8578 0.6226
0.8452 45.0007 6164 1.3833 0.8521 0.6220
0.8284 46.0007 6298 1.2703 0.8594 0.6330
0.7989 47.0006 6432 1.2957 0.8653 0.6342
0.793 48.0006 6566 1.2856 0.8688 0.6519
0.7824 49.0006 6700 1.2281 0.8693 0.6441
0.7463 50.0006 6834 1.2627 0.8723 0.6507
0.7483 51.0006 6968 1.2259 0.8694 0.6623
0.7055 52.0006 7102 1.2387 0.8682 0.6540
0.6776 53.0006 7236 1.3164 0.8680 0.6648
0.6857 54.0006 7370 1.3460 0.8658 0.6626
0.7119 55.0006 7504 1.2333 0.8774 0.6765
0.6596 56.0006 7638 1.2530 0.8733 0.6779
0.6563 57.0006 7772 1.2025 0.8865 0.6873
0.6339 58.0006 7906 1.1617 0.8881 0.6934
0.6279 59.0006 8040 1.1904 0.8888 0.6920
0.6235 60.0005 8174 1.2045 0.8899 0.6950
0.6099 61.0005 8308 1.2477 0.8865 0.6971
0.6012 62.0005 8442 1.1347 0.8953 0.7033
0.5739 63.0005 8576 1.1254 0.8959 0.7072
0.5729 64.0005 8710 1.2194 0.8921 0.7034
0.5885 65.0005 8844 1.1563 0.8958 0.7137
0.5753 66.0005 8978 1.2452 0.8942 0.7072
0.5472 67.0005 9112 1.0772 0.8992 0.7231
0.5523 68.0005 9246 1.1278 0.9019 0.7199
0.5384 69.0005 9380 1.1228 0.8997 0.7132
0.5285 70.0005 9514 1.1582 0.8998 0.7262
0.5329 71.0005 9648 1.2059 0.9050 0.7312
0.5187 72.0005 9782 1.1313 0.9026 0.7338
0.5223 73.0005 9916 1.2060 0.8972 0.7243
0.5112 74.0004 10050 1.0968 0.9010 0.7288
0.5092 75.0004 10184 1.1148 0.9038 0.7355
0.5163 76.0004 10318 1.1616 0.9031 0.7375
0.4888 77.0004 10452 1.2090 0.9011 0.7356
0.4843 78.0004 10586 1.1041 0.9102 0.7450
0.4883 79.0004 10720 1.1185 0.9123 0.7471
0.468 80.0004 10854 1.1897 0.9028 0.7394
0.5335 81.0004 10988 1.1172 0.9107 0.7517
0.4713 82.0004 11122 1.1265 0.9068 0.7435
0.4628 83.0004 11256 1.1179 0.9072 0.7497
0.4651 84.0004 11390 1.1078 0.9067 0.7555
0.4648 85.0004 11524 1.1391 0.9117 0.7578
0.4644 86.0004 11658 1.1462 0.9107 0.7545
0.4571 87.0003 11792 1.1315 0.9132 0.7596
0.4592 88.0003 11926 1.0956 0.9145 0.7622
0.449 89.0003 12060 1.0572 0.9131 0.7603
0.4436 90.0003 12194 1.0729 0.9154 0.7600
0.4393 91.0003 12328 1.1984 0.9117 0.7564
0.446 92.0003 12462 1.1225 0.9163 0.7676
0.4354 93.0003 12596 1.0545 0.9172 0.7663
0.4335 94.0003 12730 1.1755 0.9142 0.7683
0.4337 95.0003 12864 1.0756 0.9181 0.7690
0.4467 96.0003 12998 1.1676 0.9128 0.7639
0.434 97.0003 13132 1.1052 0.9154 0.7669
0.4299 98.0003 13266 1.1338 0.9194 0.7757
0.428 99.0003 13400 1.1444 0.9157 0.7742
0.4275 100.0003 13534 1.1884 0.9156 0.7736
0.4252 101.0002 13668 1.1568 0.9131 0.7737
0.4164 102.0002 13802 1.1225 0.9171 0.7749
0.4152 103.0002 13936 1.1537 0.9153 0.7776
0.4159 104.0002 14070 1.1624 0.9178 0.7746
0.4157 105.0002 14204 1.1576 0.9199 0.7828
0.4143 106.0002 14338 1.1240 0.9216 0.7851
0.4121 107.0002 14472 1.1977 0.9200 0.7838
0.4155 108.0002 14606 1.1228 0.9207 0.7852
0.4053 109.0002 14740 1.1826 0.9208 0.7829
0.4119 110.0002 14874 1.1437 0.9215 0.7865
0.409 111.0002 15008 1.2030 0.9178 0.7817
0.4104 112.0002 15142 1.1730 0.9207 0.7887
0.4044 113.0002 15276 1.1140 0.9167 0.7827
0.4014 114.0001 15410 1.1813 0.9197 0.7870
0.3961 115.0001 15544 1.0286 0.9220 0.7856
0.3922 116.0001 15678 1.1234 0.9232 0.7944
0.402 117.0001 15812 1.1740 0.9190 0.7856
0.3979 118.0001 15946 1.2381 0.9183 0.7856
0.3963 119.0001 16080 1.0980 0.9232 0.7904
0.3971 120.0001 16214 1.0807 0.9253 0.7972
0.3979 121.0001 16348 1.2433 0.9196 0.7900
0.385 122.0001 16482 1.1439 0.9215 0.7966
0.3878 123.0001 16616 1.1335 0.9251 0.7973
0.3961 124.0001 16750 1.0517 0.9241 0.7981
0.3866 125.0001 16884 1.1566 0.9244 0.7984
0.3891 126.0001 17018 1.1221 0.9222 0.7974
0.3947 127.0001 17152 1.1581 0.9215 0.7961
0.386 128.0000 17286 1.1091 0.9228 0.7968
0.3869 129.0000 17420 1.1956 0.9219 0.7992
0.3792 130.0000 17554 1.1028 0.9265 0.8044
0.3807 131.0000 17688 1.1615 0.9236 0.8012
0.3856 132.0000 17822 1.1611 0.9236 0.7997
0.383 133.0000 17956 1.0714 0.9272 0.8075
0.3841 133.0010 18090 1.0641 0.9271 0.8089
0.3771 134.0010 18224 1.0847 0.9260 0.8028
0.3728 135.0010 18358 1.1321 0.9270 0.8084
0.3748 136.0010 18492 1.0593 0.9270 0.8081
0.3823 137.0010 18626 1.0427 0.9268 0.8074
0.3759 138.0010 18760 1.1458 0.9245 0.8030
0.377 139.0010 18894 1.1261 0.9281 0.8072
0.3759 140.0010 19028 1.0683 0.9300 0.8075
0.3744 141.0009 19162 1.1769 0.9277 0.8093
0.3726 142.0009 19296 1.1496 0.9226 0.8040
0.3711 143.0009 19430 1.1391 0.9295 0.8086
0.3757 144.0009 19564 1.1431 0.9259 0.8049
0.3692 145.0009 19698 1.1009 0.9245 0.8093
0.3721 146.0009 19832 1.1249 0.9292 0.8088
0.3757 147.0009 19966 1.1317 0.9265 0.8105
0.3688 148.0009 20100 1.1235 0.9302 0.8143
0.365 149.0009 20234 1.1392 0.9273 0.8140
0.3716 150.0009 20368 1.1094 0.9280 0.8106
0.3721 151.0009 20502 1.1367 0.9270 0.8095
0.3672 152.0009 20636 1.0418 0.9278 0.8131
0.3689 153.0009 20770 1.1297 0.9275 0.8145
0.3636 154.0008 20904 1.0557 0.9292 0.8171
0.3628 155.0008 21038 1.1378 0.9294 0.8155
0.3662 156.0008 21172 1.1843 0.9283 0.8141
0.3654 157.0008 21306 1.1547 0.9305 0.8175
0.3611 158.0008 21440 1.1781 0.9314 0.8157
0.3648 159.0008 21574 1.1277 0.9289 0.8160
0.3592 160.0008 21708 1.1404 0.9306 0.8143
0.3573 161.0008 21842 1.1759 0.9233 0.8069
0.361 162.0008 21976 1.0884 0.9282 0.8117
0.3577 163.0008 22110 1.1466 0.9298 0.8147
0.3574 164.0008 22244 1.1322 0.9308 0.8140
0.3624 165.0008 22378 1.1427 0.9300 0.8156
0.364 166.0008 22512 1.0894 0.9298 0.8196
0.3594 167.0008 22646 1.1468 0.9314 0.8197
0.3563 168.0007 22780 1.1269 0.9314 0.8211
0.3574 169.0007 22914 1.1715 0.9293 0.8208
0.3553 170.0007 23048 1.1810 0.9276 0.8146
0.3652 171.0007 23182 1.1446 0.9328 0.8216
0.3616 172.0007 23316 1.1073 0.9302 0.8230
0.3544 173.0007 23450 1.1607 0.9305 0.8199
0.3588 174.0007 23584 1.0762 0.9311 0.8214
0.3497 175.0007 23718 1.2322 0.9295 0.8216
0.3546 176.0007 23852 1.0806 0.9318 0.8241
0.3525 177.0007 23986 1.1816 0.9310 0.8228
0.3532 178.0007 24120 1.1360 0.9298 0.8200
0.3512 179.0007 24254 1.1131 0.9288 0.8217
0.357 180.0007 24388 1.0603 0.9326 0.8233
0.3505 181.0006 24522 1.1621 0.9304 0.8208
0.3461 182.0006 24656 1.1579 0.9326 0.8256
0.3464 183.0006 24790 1.1323 0.9284 0.8198
0.3467 184.0006 24924 1.1901 0.9327 0.8265
0.3438 185.0006 25058 1.1528 0.9310 0.8234
0.3472 186.0006 25192 1.0564 0.9304 0.8209
0.3458 187.0006 25326 1.1367 0.9312 0.8253
0.3474 188.0006 25460 1.1996 0.9300 0.8214
0.3545 189.0006 25594 1.0940 0.9308 0.8260
0.3475 190.0006 25728 1.1275 0.9312 0.8244
0.3451 191.0006 25862 1.1172 0.9335 0.8253
0.3548 192.0006 25996 1.1018 0.9325 0.8269
0.3495 193.0006 26130 1.2482 0.9299 0.8236
0.3434 194.0005 26264 1.0972 0.9310 0.8256
0.3394 195.0005 26398 1.1501 0.9330 0.8252
0.348 196.0005 26532 1.0713 0.9341 0.8302
0.3482 197.0005 26666 1.0762 0.9304 0.8276
0.346 198.0005 26800 1.1292 0.9318 0.8297
0.3413 199.0005 26934 1.1672 0.9306 0.8309
0.3469 200.0005 27068 1.1858 0.9321 0.8274
0.3481 201.0005 27202 1.1274 0.9334 0.8282
0.3444 202.0005 27336 1.0595 0.9340 0.8296
0.3409 203.0005 27470 1.1346 0.9313 0.8233
0.3404 204.0005 27604 1.1648 0.9300 0.8260
0.3415 205.0005 27738 1.1321 0.9339 0.8323
0.3366 206.0005 27872 1.0624 0.9355 0.8320
0.3434 207.0005 28006 1.1668 0.9347 0.8312
0.3361 208.0004 28140 1.2214 0.9303 0.8271
0.3436 209.0004 28274 1.1347 0.9322 0.8261
0.334 210.0004 28408 1.1120 0.9327 0.8298
0.3437 211.0004 28542 1.1540 0.9321 0.8298
0.3394 212.0004 28676 1.1963 0.9311 0.8295
0.3353 213.0004 28810 1.0861 0.9333 0.8332
0.3363 214.0004 28944 1.1713 0.9336 0.8318
0.3424 215.0004 29078 1.0783 0.9352 0.8331
0.3358 216.0004 29212 1.2150 0.9343 0.8339
0.3398 217.0004 29346 1.0477 0.9340 0.8304
0.3412 218.0004 29480 1.1030 0.9338 0.8349
0.3319 219.0004 29614 1.1323 0.9350 0.8352
0.3341 220.0004 29748 1.1640 0.9330 0.8316
0.3342 221.0003 29882 1.1778 0.9341 0.8332
0.3315 222.0003 30016 1.1014 0.9355 0.8336
0.3358 223.0003 30150 1.0782 0.9356 0.8360
0.3304 224.0003 30284 1.1710 0.9331 0.8343
0.3376 225.0003 30418 1.1315 0.9332 0.8307
0.3377 226.0003 30552 1.1422 0.9333 0.8375
0.3407 227.0003 30686 1.1212 0.9327 0.8339
0.3336 228.0003 30820 1.1862 0.9329 0.8331
0.3291 229.0003 30954 1.1664 0.9338 0.8365
0.3289 230.0003 31088 1.1416 0.9312 0.8349
0.3348 231.0003 31222 1.1191 0.9350 0.8319
0.3332 232.0003 31356 1.1485 0.9347 0.8344
0.3333 233.0003 31490 1.1854 0.9329 0.8371
0.3366 234.0003 31624 1.1300 0.9343 0.8364
0.3327 235.0002 31758 1.1206 0.9337 0.8344
0.3303 236.0002 31892 1.1259 0.9344 0.8386
0.3351 237.0002 32026 1.2126 0.9332 0.8339
0.3325 238.0002 32160 1.0613 0.9332 0.8365
0.3307 239.0002 32294 1.1920 0.9333 0.8381
0.3229 240.0002 32428 1.1440 0.9308 0.8361
0.3306 241.0002 32562 1.1151 0.9366 0.8403
0.3314 242.0002 32696 1.1222 0.9369 0.8409
0.3305 243.0002 32830 1.0968 0.9363 0.8411
0.3329 244.0002 32964 1.2053 0.9325 0.8374
0.331 245.0002 33098 1.2320 0.9304 0.8357
0.3326 246.0002 33232 1.0964 0.9348 0.8386
0.3256 247.0002 33366 1.1932 0.9355 0.8357
0.3248 248.0001 33500 1.1480 0.9348 0.8377
0.3271 249.0001 33634 1.0855 0.9329 0.8342
0.3305 250.0001 33768 1.1305 0.9354 0.8370
0.3238 251.0001 33902 1.1825 0.9353 0.8337
0.3366 252.0001 34036 1.1667 0.9295 0.8342
0.3304 253.0001 34170 1.1602 0.9324 0.8377
0.3298 254.0001 34304 1.2036 0.9342 0.8392
0.3229 255.0001 34438 1.1078 0.9352 0.8383
0.3256 256.0001 34572 1.2037 0.9333 0.8369
0.3304 257.0001 34706 1.1323 0.9330 0.8373
0.3328 258.0001 34840 1.1087 0.9362 0.8406
0.3308 259.0001 34974 1.1195 0.9350 0.8402
0.3262 260.0001 35108 1.2003 0.9346 0.8423
0.323 261.0001 35242 1.1591 0.9340 0.8404
0.3273 262.0000 35376 1.1502 0.9341 0.8358
0.3284 263.0000 35510 1.1411 0.9352 0.8387
0.3277 264.0000 35644 1.1039 0.9328 0.8406
0.3198 265.0000 35778 1.1403 0.9352 0.8422
0.3211 266.0000 35912 1.1426 0.9346 0.8394
0.3224 267.0000 36046 1.0819 0.9373 0.8460
0.3233 267.0010 36180 1.2254 0.9332 0.8419
0.324 268.0010 36314 1.1642 0.9322 0.8396
0.3194 269.0010 36448 1.1398 0.9345 0.8398
0.3222 270.0010 36582 1.1631 0.9369 0.8440
0.3203 271.0010 36716 1.1834 0.9336 0.8399
0.321 272.0010 36850 1.1637 0.9358 0.8414
0.3196 273.0010 36984 1.1655 0.9365 0.8413
0.324 274.0010 37118 1.1740 0.9333 0.8383
0.3192 275.0009 37252 1.2534 0.9334 0.8422
0.3225 276.0009 37386 1.1748 0.9363 0.8437
0.3246 277.0009 37520 1.1696 0.9342 0.8374
0.3237 278.0009 37654 1.1097 0.9354 0.8430
0.3172 279.0009 37788 1.1747 0.9332 0.8397
0.3263 280.0009 37922 1.1971 0.9311 0.8336
0.319 281.0009 38056 1.1673 0.9373 0.8420
0.32 282.0009 38190 1.0440 0.9356 0.8428
0.319 283.0009 38324 1.1730 0.9356 0.8404
0.3186 284.0009 38458 1.2349 0.9318 0.8381
0.3198 285.0009 38592 1.2052 0.9364 0.8448
0.3222 286.0009 38726 1.2739 0.9352 0.8407

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
1
Safetensors
Model size
31.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Arthur-Tsai/histv4_ftis_pretrain_tssp-smlm

Finetuned
(2)
this model