ht-stmini-cls-v6_ftis_noPretrain-gtsp-m0drp0.5trp0.5

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0984
  • Accuracy: 0.9353
  • Macro F1: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134675

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
30.5642 0.0015 202 48.4066 0.0502 0.0220
8.994 1.0015 404 130.4324 0.3974 0.1032
6.0018 2.0015 606 174.4447 0.5164 0.1278
5.181 3.0015 808 184.3177 0.5665 0.1367
4.5083 4.0015 1010 124.2244 0.5827 0.1437
3.6994 5.0015 1212 85.9686 0.6029 0.1525
3.195 6.0015 1414 65.8899 0.6016 0.1541
2.8054 7.0015 1616 46.7765 0.6137 0.1612
2.5979 8.0015 1818 37.1677 0.6074 0.1726
2.4837 9.0015 2020 29.5279 0.6273 0.1747
2.3096 10.0015 2222 21.8417 0.6443 0.1986
2.2043 11.0015 2424 20.2060 0.6563 0.2127
2.0709 12.0015 2626 16.1721 0.6641 0.2220
2.0367 13.0015 2828 13.5220 0.6628 0.2412
1.9607 14.0015 3030 10.3548 0.6850 0.2641
1.7798 15.0015 3232 8.9884 0.7020 0.3026
1.7944 16.0015 3434 11.1503 0.7074 0.3082
1.6719 17.0015 3636 8.4811 0.7401 0.3496
1.5376 18.0015 3838 8.7104 0.7211 0.3515
1.5232 19.0015 4040 8.4537 0.7539 0.4060
1.44 20.0015 4242 9.2561 0.7476 0.3988
1.4019 21.0015 4444 8.7611 0.7407 0.4284
1.256 22.0015 4646 7.7161 0.7710 0.4539
1.2696 23.0015 4848 8.9902 0.7849 0.4715
1.1858 24.0015 5050 8.2483 0.7889 0.4853
1.1429 25.0015 5252 9.9738 0.7856 0.4907
1.1219 26.0015 5454 9.4435 0.7874 0.5001
1.0779 27.0015 5656 9.3742 0.8070 0.5209
1.0028 28.0015 5858 10.6646 0.8110 0.5318
0.9902 29.0015 6060 12.0446 0.8051 0.5302
0.9123 30.0015 6262 13.7182 0.8193 0.5554
0.9007 31.0015 6464 14.9443 0.8237 0.5751
0.9344 32.0015 6666 16.1438 0.8172 0.5711
0.868 33.0015 6868 18.5096 0.8264 0.5791
0.8239 34.0015 7070 15.8741 0.8367 0.6054
0.7469 35.0015 7272 16.5483 0.8354 0.5995
0.688 36.0015 7474 18.1927 0.8230 0.6031
0.6575 37.0015 7676 20.5429 0.8312 0.6084
0.6151 38.0015 7878 18.0160 0.8388 0.6176
0.627 39.0015 8080 23.4320 0.8493 0.6375
0.562 40.0015 8282 18.1977 0.8588 0.6581
0.5481 41.0015 8484 21.5435 0.8515 0.6481
0.5085 42.0015 8686 21.4124 0.8648 0.6686
0.5177 43.0015 8888 22.9297 0.8646 0.6814
0.4579 44.0015 9090 23.5124 0.8613 0.6726
0.4302 45.0015 9292 21.4971 0.8701 0.6863
0.4219 46.0015 9494 22.6446 0.8680 0.6843
0.4016 47.0015 9696 18.9104 0.8792 0.7039
0.4184 48.0015 9898 19.1576 0.8802 0.7076
0.3826 49.0015 10100 17.9263 0.8812 0.7045
0.3493 50.0015 10302 22.0815 0.8791 0.7036
0.3441 51.0015 10504 20.2676 0.8814 0.7205
0.3101 52.0015 10706 18.1319 0.8908 0.7240
0.3163 53.0015 10908 15.9699 0.8891 0.7176
0.2893 54.0015 11110 14.8609 0.8883 0.7251
0.2916 55.0015 11312 14.5047 0.8952 0.7387
0.2907 56.0015 11514 12.5785 0.8830 0.7189
0.2829 57.0015 11716 11.9577 0.8965 0.7401
0.2661 58.0015 11918 10.1292 0.8996 0.7411
0.2473 59.0015 12120 10.6754 0.8966 0.7518
0.2433 60.0015 12322 9.8951 0.9020 0.7536
0.2346 61.0015 12524 9.1817 0.8982 0.7562
0.2361 62.0015 12726 9.2348 0.9081 0.7647
0.2282 63.0015 12928 8.2578 0.9048 0.7545
0.2152 64.0015 13130 7.9239 0.9012 0.7622
0.2068 65.0015 13332 7.7363 0.9046 0.7475
0.2043 66.0015 13534 8.9983 0.9135 0.7724
0.2051 67.0015 13736 7.0282 0.9079 0.7684
0.1819 68.0015 13938 8.3391 0.9094 0.7746
0.1782 69.0015 14140 7.1077 0.9104 0.7683
0.1815 70.0015 14342 7.0881 0.9114 0.7758
0.1955 71.0015 14544 6.4188 0.9139 0.7806
0.1611 72.0015 14746 6.7995 0.9113 0.7619
0.1706 73.0015 14948 5.1703 0.9139 0.7805
0.173 74.0015 15150 5.9764 0.9089 0.7724
0.161 75.0015 15352 5.3192 0.9177 0.7942
0.1635 76.0015 15554 5.0067 0.9111 0.7630
0.1667 77.0015 15756 5.2790 0.9178 0.7951
0.1568 78.0015 15958 4.2193 0.9192 0.7963
0.15 79.0015 16160 5.0253 0.9195 0.8006
0.1522 80.0015 16362 4.3419 0.9209 0.7984
0.1525 81.0015 16564 4.4278 0.9214 0.8033
0.1446 82.0015 16766 4.7172 0.9147 0.7786
0.135 83.0015 16968 4.6609 0.9196 0.8005
0.1477 84.0015 17170 4.7346 0.9187 0.7860
0.1411 85.0015 17372 4.3828 0.9238 0.8104
0.1436 86.0015 17574 4.1644 0.9237 0.7842
0.1461 87.0015 17776 4.5072 0.9228 0.8088
0.1367 88.0015 17978 4.0510 0.9255 0.7902
0.1321 89.0015 18180 3.9666 0.9232 0.8086
0.1305 90.0015 18382 3.6062 0.9204 0.8075
0.1345 91.0015 18584 4.0815 0.9269 0.8183
0.1278 92.0015 18786 4.0282 0.9272 0.7987
0.128 93.0015 18988 4.3457 0.9275 0.8179
0.1301 94.0015 19190 3.9639 0.9193 0.8096
0.1247 95.0015 19392 3.4750 0.9222 0.8093
0.1181 96.0015 19594 4.0719 0.9268 0.7997
0.1249 97.0015 19796 4.0962 0.9232 0.7925
0.1211 98.0015 19998 3.0856 0.9242 0.8153
0.1244 99.0015 20200 3.7927 0.9300 0.8269
0.1228 100.0015 20402 4.1042 0.9245 0.8210
0.1252 101.0015 20604 3.2281 0.9191 0.8117
0.1184 102.0015 20806 3.8921 0.9258 0.7989
0.116 103.0015 21008 3.5643 0.9240 0.7930
0.1146 104.0015 21210 3.6786 0.9263 0.8239
0.1089 105.0015 21412 3.1257 0.9223 0.8188
0.1156 106.0015 21614 3.2198 0.9296 0.8281
0.1155 107.0015 21816 4.2488 0.9296 0.8284
0.115 108.0015 22018 3.3918 0.9312 0.8316
0.1124 109.0015 22220 4.2238 0.9275 0.7980
0.1176 110.0015 22422 3.5526 0.9248 0.8247
0.108 111.0015 22624 3.7278 0.9277 0.8034
0.1155 112.0015 22826 2.9757 0.9293 0.8111
0.1157 113.0015 23028 4.0415 0.9302 0.8100
0.1127 114.0015 23230 3.6240 0.9209 0.8179
0.1102 115.0015 23432 4.2640 0.9222 0.8210
0.1087 116.0015 23634 3.3939 0.9256 0.8235
0.1062 117.0015 23836 3.5001 0.9244 0.8233
0.1148 118.0015 24038 3.1166 0.9241 0.8237
0.1062 119.0015 24240 3.3939 0.9273 0.8280
0.1085 120.0015 24442 2.9604 0.9310 0.8382
0.1051 121.0015 24644 4.0274 0.9334 0.8345
0.1086 122.0015 24846 3.2272 0.9303 0.8164
0.1089 123.0015 25048 3.4494 0.9303 0.8295
0.1032 124.0015 25250 3.9736 0.9283 0.8344
0.1008 125.0015 25452 3.2364 0.9270 0.8283
0.107 126.0015 25654 3.0853 0.9303 0.8318
0.1027 127.0015 25856 2.8613 0.9274 0.8276
0.1055 128.0015 26058 3.5216 0.9344 0.8400
0.0992 129.0015 26260 3.2111 0.9289 0.8113
0.1016 130.0015 26462 3.0904 0.9313 0.8153
0.1048 131.0015 26664 3.0683 0.9275 0.8278
0.1013 132.0015 26866 3.0640 0.9357 0.8419
0.1001 133.0015 27068 3.9176 0.9277 0.8357
0.0982 134.0015 27270 3.8884 0.9328 0.8357
0.0987 135.0015 27472 2.9484 0.9316 0.8230
0.1032 136.0015 27674 3.0422 0.9306 0.8231
0.1 137.0015 27876 2.8315 0.9347 0.8454
0.1064 138.0015 28078 2.8000 0.9240 0.8283
0.104 139.0015 28280 2.6454 0.9327 0.8216
0.0954 140.0015 28482 2.8498 0.9312 0.8363
0.0975 141.0015 28684 2.5273 0.9268 0.8387
0.1029 142.0015 28886 2.6274 0.9290 0.8203
0.0942 143.0015 29088 2.4978 0.9330 0.8464
0.0942 144.0015 29290 2.8382 0.9297 0.8391
0.0928 145.0015 29492 2.5957 0.9278 0.8308
0.0935 146.0015 29694 2.5257 0.9353 0.8467
0.0986 147.0015 29896 2.4009 0.9334 0.8455
0.0997 148.0015 30098 2.3482 0.9213 0.8271
0.0965 149.0015 30300 2.9011 0.9307 0.8407
0.1002 150.0015 30502 2.9034 0.9296 0.8215
0.0985 151.0015 30704 2.7558 0.9333 0.8465
0.0948 152.0015 30906 2.8537 0.9253 0.8296
0.094 153.0015 31108 2.6953 0.9303 0.8381
0.0947 154.0015 31310 2.9234 0.9279 0.8341
0.0933 155.0015 31512 3.1025 0.9314 0.8409
0.09 156.0015 31714 2.9860 0.9341 0.8477
0.0957 157.0015 31916 2.4554 0.9311 0.8428
0.0996 158.0015 32118 2.3515 0.9299 0.8441
0.0918 159.0015 32320 2.6207 0.9338 0.8457
0.0905 160.0015 32522 2.5530 0.9335 0.8501
0.0973 161.0015 32724 2.8847 0.9325 0.8483
0.0947 162.0015 32926 2.8203 0.9340 0.8492
0.0926 163.0015 33128 2.7850 0.9266 0.8325
0.097 164.0015 33330 2.8011 0.9326 0.8471
0.0979 165.0015 33532 2.6786 0.9312 0.8453
0.0933 166.0015 33734 2.6802 0.9312 0.8429
0.0938 167.0015 33936 2.8351 0.9315 0.8317
0.0905 168.0015 34138 3.1833 0.9346 0.8475
0.0916 169.0015 34340 2.4393 0.9310 0.8467
0.0902 170.0015 34542 2.7744 0.9305 0.8362
0.0889 171.0015 34744 2.7210 0.9319 0.8431
0.0919 172.0015 34946 2.3640 0.9298 0.8212
0.0907 173.0015 35148 2.2011 0.9313 0.8386
0.0904 174.0015 35350 2.1926 0.9331 0.8283
0.0907 175.0015 35552 1.9826 0.9347 0.8300
0.0824 176.0015 35754 1.9947 0.9331 0.8512
0.0881 177.0015 35956 2.3762 0.9361 0.8328
0.0884 178.0015 36158 2.7672 0.9379 0.8513
0.0868 179.0015 36360 2.7146 0.9317 0.8422
0.0832 180.0015 36562 2.5551 0.9375 0.8535
0.0918 181.0015 36764 2.3849 0.9309 0.8268
0.0929 182.0015 36966 2.3428 0.9299 0.8307
0.0876 183.0015 37168 2.4630 0.9351 0.8496
0.0854 184.0015 37370 2.4226 0.9395 0.8556
0.0909 185.0015 37572 2.0227 0.9316 0.8472
0.0856 186.0015 37774 2.2088 0.9331 0.8446
0.0829 187.0015 37976 2.3044 0.9310 0.8430
0.0829 188.0015 38178 2.4824 0.9308 0.8485
0.0807 189.0015 38380 2.3372 0.9323 0.8461
0.0831 190.0015 38582 2.4829 0.9319 0.8460
0.0849 191.0015 38784 2.4735 0.9324 0.8486
0.0842 192.0015 38986 2.0283 0.9349 0.8505
0.0938 193.0015 39188 2.0015 0.9308 0.8441
0.0843 194.0015 39390 2.0954 0.9315 0.8458
0.0883 195.0015 39592 2.1527 0.9317 0.8488
0.0862 196.0015 39794 1.8646 0.9353 0.8335
0.0897 197.0015 39996 2.0201 0.9353 0.8571
0.0913 198.0015 40198 2.2815 0.9337 0.8450
0.0853 199.0015 40400 1.9121 0.9340 0.8509
0.0875 200.0015 40602 1.8991 0.9347 0.8505
0.0821 201.0015 40804 1.7774 0.9349 0.8526
0.0812 202.0015 41006 1.9890 0.9326 0.8464
0.0804 203.0015 41208 1.9273 0.9349 0.8365
0.0826 204.0015 41410 2.1633 0.9260 0.8424
0.0922 205.0015 41612 1.9816 0.9299 0.8457
0.0843 206.0015 41814 2.0427 0.9310 0.8485
0.0797 207.0015 42016 1.9242 0.9343 0.8514
0.0822 208.0015 42218 2.0598 0.9373 0.8357
0.0815 209.0015 42420 2.0340 0.9306 0.8411
0.0828 210.0015 42622 1.7986 0.9372 0.8538
0.0828 211.0015 42824 1.9931 0.9340 0.8499
0.0842 212.0015 43026 2.0401 0.9365 0.8527
0.0823 213.0015 43228 2.0382 0.9328 0.8497
0.0835 214.0015 43430 1.8261 0.9342 0.8516
0.0811 215.0015 43632 2.1922 0.9352 0.8547
0.0814 216.0015 43834 2.7958 0.9316 0.8493
0.083 217.0015 44036 2.2992 0.9291 0.8460

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
11
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support