ht-stmini-cls-v6_ftis_noPretrain-gtsp-m1drp0.0trp0.0

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4060
  • Accuracy: 0.8929
  • Macro F1: 0.7414

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134674

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
19.9958 0.0013 174 25.5174 0.0448 0.0328
9.0928 1.0013 348 59.1623 0.2134 0.0800
3.8475 2.0013 522 102.7102 0.4798 0.1244
3.3121 3.0013 696 84.3994 0.5223 0.1308
2.9094 4.0013 870 89.3619 0.5615 0.1361
2.6139 5.0013 1044 61.8611 0.5858 0.1460
2.1768 6.0012 1218 43.5596 0.5704 0.1476
2.0359 7.0012 1392 34.0368 0.6067 0.1562
1.6432 8.0012 1566 25.2031 0.6183 0.1598
1.6239 9.0012 1740 17.7458 0.6001 0.1620
1.5318 10.0012 1914 14.1748 0.6228 0.1634
1.3959 11.0012 2088 11.2831 0.6288 0.1830
1.3754 12.0012 2262 8.2148 0.6375 0.1978
1.326 13.0012 2436 7.3165 0.6301 0.2108
1.2529 14.0012 2610 5.8729 0.6471 0.2193
1.263 15.0012 2784 4.6390 0.6674 0.2515
1.1709 16.0012 2958 3.7234 0.6715 0.2507
1.1163 17.0012 3132 3.4561 0.6998 0.2850
1.0908 18.0012 3306 3.4270 0.7057 0.2896
1.089 19.0012 3480 2.7688 0.7130 0.3019
1.0303 20.0011 3654 2.5266 0.7266 0.3278
1.0225 21.0011 3828 2.1207 0.7391 0.3410
0.9721 22.0011 4002 2.3522 0.7427 0.3699
0.9075 23.0011 4176 2.5133 0.7322 0.3799
0.8896 24.0011 4350 1.8887 0.7493 0.3955
0.8802 25.0011 4524 1.9004 0.7607 0.4188
0.8528 26.0011 4698 2.1815 0.7545 0.4161
0.8697 27.0011 4872 2.4849 0.7456 0.4201
0.8201 28.0011 5046 2.3108 0.7690 0.4442
0.8203 29.0011 5220 1.9740 0.7602 0.4417
0.8 30.0011 5394 2.4098 0.7636 0.4522
0.7721 31.0011 5568 2.0346 0.7650 0.4363
0.7545 32.0011 5742 2.1536 0.7615 0.4543
0.7604 33.0010 5916 2.1326 0.7759 0.4762
0.7291 34.0010 6090 2.0523 0.7763 0.4918
0.7208 35.0010 6264 2.3761 0.7856 0.4916
0.7012 36.0010 6438 2.5768 0.7733 0.4749
0.6973 37.0010 6612 2.6120 0.7721 0.4798
0.6787 38.0010 6786 2.7726 0.7891 0.4942
0.659 39.0010 6960 4.0918 0.7846 0.4886
0.6445 40.0010 7134 3.3845 0.7945 0.5200
0.6361 41.0010 7308 3.7149 0.7977 0.5260
0.6193 42.0010 7482 4.3992 0.8050 0.5209
0.6124 43.0010 7656 2.9952 0.8017 0.5341
0.6113 44.0010 7830 4.5391 0.8094 0.5391
0.5983 45.0010 8004 4.8019 0.8012 0.5274
0.5816 46.0010 8178 4.7313 0.8085 0.5455
0.5697 47.0009 8352 4.6318 0.8094 0.5499
0.5659 48.0009 8526 5.8999 0.8044 0.5431
0.5516 49.0009 8700 5.9779 0.8136 0.5576
0.5421 50.0009 8874 6.4143 0.8129 0.5605
0.5414 51.0009 9048 7.5933 0.8122 0.5526
0.5213 52.0009 9222 7.8657 0.8125 0.5680
0.5074 53.0009 9396 7.6091 0.8166 0.5684
0.5041 54.0009 9570 7.9929 0.8221 0.5799
0.5018 55.0009 9744 9.0274 0.8245 0.5757
0.5 56.0009 9918 8.6587 0.8306 0.5870
0.4869 57.0009 10092 7.6765 0.8275 0.5901
0.4693 58.0009 10266 8.8191 0.8326 0.5965
0.4627 59.0009 10440 10.0637 0.8315 0.6004
0.4596 60.0008 10614 8.1679 0.8370 0.6042
0.4518 61.0008 10788 8.4349 0.8359 0.6036
0.4385 62.0008 10962 9.2130 0.8369 0.6038
0.4378 63.0008 11136 9.3141 0.8403 0.6101
0.4336 64.0008 11310 9.0886 0.8385 0.6147
0.4221 65.0008 11484 8.8874 0.8412 0.6167
0.418 66.0008 11658 8.3751 0.8392 0.6154
0.4143 67.0008 11832 8.4800 0.8473 0.6248
0.4222 68.0008 12006 8.5978 0.8522 0.6383
0.3991 69.0008 12180 8.9944 0.8506 0.6304
0.4036 70.0008 12354 10.3317 0.8483 0.6353
0.401 71.0008 12528 8.8000 0.8547 0.6419
0.3967 72.0008 12702 10.1595 0.8592 0.6489
0.3919 73.0007 12876 7.7002 0.8537 0.6402
0.3801 74.0007 13050 7.3951 0.8569 0.6521
0.3841 75.0007 13224 8.1720 0.8530 0.6475
0.3697 76.0007 13398 7.3588 0.8532 0.6478
0.3756 77.0007 13572 7.8917 0.8565 0.6525
0.376 78.0007 13746 6.6505 0.8564 0.6524
0.3696 79.0007 13920 7.3225 0.8669 0.6651
0.3655 80.0007 14094 7.7997 0.8628 0.6598
0.3671 81.0007 14268 6.8883 0.8652 0.6684
0.3511 82.0007 14442 7.2238 0.8610 0.6628
0.3467 83.0007 14616 7.2216 0.8718 0.6778
0.3451 84.0007 14790 5.8581 0.8646 0.6654
0.3479 85.0007 14964 6.7665 0.8710 0.6779
0.3427 86.0007 15138 6.9367 0.8635 0.6597
0.3357 87.0006 15312 6.8716 0.8669 0.6714
0.3347 88.0006 15486 7.3971 0.8720 0.6845
0.3363 89.0006 15660 7.4414 0.8675 0.6734
0.3349 90.0006 15834 7.6525 0.8723 0.6831
0.3328 91.0006 16008 7.3987 0.8677 0.6816
0.339 92.0006 16182 6.7756 0.8691 0.6776
0.3244 93.0006 16356 7.5267 0.8681 0.6821
0.3246 94.0006 16530 6.1880 0.8721 0.6851
0.3181 95.0006 16704 6.6994 0.8756 0.6883
0.3209 96.0006 16878 6.3240 0.8685 0.6768
0.3266 97.0006 17052 6.5154 0.8770 0.6915
0.3167 98.0006 17226 5.9771 0.8722 0.6943
0.3194 99.0006 17400 5.5076 0.8760 0.6924
0.3201 100.0005 17574 5.8461 0.8798 0.7009
0.3167 101.0005 17748 6.4426 0.8754 0.7015
0.3087 102.0005 17922 6.5166 0.8750 0.6961
0.3146 103.0005 18096 5.5320 0.8811 0.7013
0.3088 104.0005 18270 5.7319 0.8779 0.6971
0.3116 105.0005 18444 5.8537 0.8770 0.7026
0.3117 106.0005 18618 5.7541 0.8801 0.7103
0.3032 107.0005 18792 5.9563 0.8817 0.7082
0.3051 108.0005 18966 5.4975 0.8825 0.7052
0.3022 109.0005 19140 4.7743 0.8846 0.7058
0.3025 110.0005 19314 5.4460 0.8819 0.7073
0.2993 111.0005 19488 5.4186 0.8780 0.7033
0.3009 112.0005 19662 5.1009 0.8819 0.7075
0.2974 113.0005 19836 6.2867 0.8826 0.7066
0.2926 114.0004 20010 5.3547 0.8857 0.7144
0.2917 115.0004 20184 4.6978 0.8822 0.7113
0.2961 116.0004 20358 5.6941 0.8848 0.7138
0.2946 117.0004 20532 5.7652 0.8830 0.7154
0.2855 118.0004 20706 5.2779 0.8810 0.7127
0.294 119.0004 20880 5.4494 0.8830 0.7174
0.2949 120.0004 21054 4.9102 0.8863 0.7207
0.2953 121.0004 21228 5.4646 0.8819 0.7089
0.2885 122.0004 21402 5.2363 0.8852 0.7265
0.2953 123.0004 21576 5.3327 0.8848 0.7209
0.2905 124.0004 21750 4.6292 0.8860 0.7214
0.2872 125.0004 21924 4.7491 0.8840 0.7196
0.2883 126.0004 22098 5.4074 0.8891 0.7215
0.2867 127.0003 22272 5.2755 0.8835 0.7228
0.2914 128.0003 22446 4.4630 0.8900 0.7268
0.289 129.0003 22620 4.6869 0.8842 0.7226
0.2873 130.0003 22794 4.5551 0.8854 0.7192
0.2829 131.0003 22968 4.4850 0.8913 0.7287
0.2829 132.0003 23142 4.1853 0.8880 0.7264
0.2836 133.0003 23316 4.4679 0.8886 0.7237
0.282 134.0003 23490 5.3415 0.8836 0.7225
0.278 135.0003 23664 5.0775 0.8909 0.7267
0.2784 136.0003 23838 5.0476 0.8917 0.7322
0.2797 137.0003 24012 4.5069 0.8936 0.7322
0.2758 138.0003 24186 4.3858 0.8898 0.7293
0.2819 139.0003 24360 5.0124 0.8890 0.7335
0.2821 140.0003 24534 4.4299 0.8929 0.7414
0.2752 141.0002 24708 4.6434 0.8898 0.7315
0.2763 142.0002 24882 4.8096 0.8912 0.7262
0.2743 143.0002 25056 4.8188 0.8923 0.7330
0.2756 144.0002 25230 4.1003 0.8911 0.7322
0.2754 145.0002 25404 4.1141 0.8877 0.7264
0.2701 146.0002 25578 4.1455 0.8923 0.7350
0.2701 147.0002 25752 4.2590 0.8955 0.7348
0.2706 148.0002 25926 4.9214 0.8918 0.7321
0.2689 149.0002 26100 4.4422 0.8938 0.7345
0.2709 150.0002 26274 4.4412 0.8848 0.7243
0.2714 151.0002 26448 3.6271 0.8878 0.7280
0.2708 152.0002 26622 4.6959 0.8954 0.7410
0.268 153.0002 26796 4.9066 0.8936 0.7398
0.2655 154.0001 26970 4.6026 0.8961 0.7385
0.2643 155.0001 27144 4.3143 0.8950 0.7380
0.2661 156.0001 27318 4.2562 0.8916 0.7354
0.2684 157.0001 27492 4.1381 0.8909 0.7354
0.2605 158.0001 27666 4.0520 0.8945 0.7373
0.2606 159.0001 27840 4.4116 0.8917 0.7390
0.2623 160.0001 28014 3.8049 0.8912 0.7342

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support