ht-stmini-cls-v6_ftis_noPretrain-gtsp-m1drp0.0trp0.0
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.4060
- Accuracy: 0.8929
- Macro F1: 0.7414
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 6733
- training_steps: 134674
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Macro F1 |
---|---|---|---|---|---|
19.9958 | 0.0013 | 174 | 25.5174 | 0.0448 | 0.0328 |
9.0928 | 1.0013 | 348 | 59.1623 | 0.2134 | 0.0800 |
3.8475 | 2.0013 | 522 | 102.7102 | 0.4798 | 0.1244 |
3.3121 | 3.0013 | 696 | 84.3994 | 0.5223 | 0.1308 |
2.9094 | 4.0013 | 870 | 89.3619 | 0.5615 | 0.1361 |
2.6139 | 5.0013 | 1044 | 61.8611 | 0.5858 | 0.1460 |
2.1768 | 6.0012 | 1218 | 43.5596 | 0.5704 | 0.1476 |
2.0359 | 7.0012 | 1392 | 34.0368 | 0.6067 | 0.1562 |
1.6432 | 8.0012 | 1566 | 25.2031 | 0.6183 | 0.1598 |
1.6239 | 9.0012 | 1740 | 17.7458 | 0.6001 | 0.1620 |
1.5318 | 10.0012 | 1914 | 14.1748 | 0.6228 | 0.1634 |
1.3959 | 11.0012 | 2088 | 11.2831 | 0.6288 | 0.1830 |
1.3754 | 12.0012 | 2262 | 8.2148 | 0.6375 | 0.1978 |
1.326 | 13.0012 | 2436 | 7.3165 | 0.6301 | 0.2108 |
1.2529 | 14.0012 | 2610 | 5.8729 | 0.6471 | 0.2193 |
1.263 | 15.0012 | 2784 | 4.6390 | 0.6674 | 0.2515 |
1.1709 | 16.0012 | 2958 | 3.7234 | 0.6715 | 0.2507 |
1.1163 | 17.0012 | 3132 | 3.4561 | 0.6998 | 0.2850 |
1.0908 | 18.0012 | 3306 | 3.4270 | 0.7057 | 0.2896 |
1.089 | 19.0012 | 3480 | 2.7688 | 0.7130 | 0.3019 |
1.0303 | 20.0011 | 3654 | 2.5266 | 0.7266 | 0.3278 |
1.0225 | 21.0011 | 3828 | 2.1207 | 0.7391 | 0.3410 |
0.9721 | 22.0011 | 4002 | 2.3522 | 0.7427 | 0.3699 |
0.9075 | 23.0011 | 4176 | 2.5133 | 0.7322 | 0.3799 |
0.8896 | 24.0011 | 4350 | 1.8887 | 0.7493 | 0.3955 |
0.8802 | 25.0011 | 4524 | 1.9004 | 0.7607 | 0.4188 |
0.8528 | 26.0011 | 4698 | 2.1815 | 0.7545 | 0.4161 |
0.8697 | 27.0011 | 4872 | 2.4849 | 0.7456 | 0.4201 |
0.8201 | 28.0011 | 5046 | 2.3108 | 0.7690 | 0.4442 |
0.8203 | 29.0011 | 5220 | 1.9740 | 0.7602 | 0.4417 |
0.8 | 30.0011 | 5394 | 2.4098 | 0.7636 | 0.4522 |
0.7721 | 31.0011 | 5568 | 2.0346 | 0.7650 | 0.4363 |
0.7545 | 32.0011 | 5742 | 2.1536 | 0.7615 | 0.4543 |
0.7604 | 33.0010 | 5916 | 2.1326 | 0.7759 | 0.4762 |
0.7291 | 34.0010 | 6090 | 2.0523 | 0.7763 | 0.4918 |
0.7208 | 35.0010 | 6264 | 2.3761 | 0.7856 | 0.4916 |
0.7012 | 36.0010 | 6438 | 2.5768 | 0.7733 | 0.4749 |
0.6973 | 37.0010 | 6612 | 2.6120 | 0.7721 | 0.4798 |
0.6787 | 38.0010 | 6786 | 2.7726 | 0.7891 | 0.4942 |
0.659 | 39.0010 | 6960 | 4.0918 | 0.7846 | 0.4886 |
0.6445 | 40.0010 | 7134 | 3.3845 | 0.7945 | 0.5200 |
0.6361 | 41.0010 | 7308 | 3.7149 | 0.7977 | 0.5260 |
0.6193 | 42.0010 | 7482 | 4.3992 | 0.8050 | 0.5209 |
0.6124 | 43.0010 | 7656 | 2.9952 | 0.8017 | 0.5341 |
0.6113 | 44.0010 | 7830 | 4.5391 | 0.8094 | 0.5391 |
0.5983 | 45.0010 | 8004 | 4.8019 | 0.8012 | 0.5274 |
0.5816 | 46.0010 | 8178 | 4.7313 | 0.8085 | 0.5455 |
0.5697 | 47.0009 | 8352 | 4.6318 | 0.8094 | 0.5499 |
0.5659 | 48.0009 | 8526 | 5.8999 | 0.8044 | 0.5431 |
0.5516 | 49.0009 | 8700 | 5.9779 | 0.8136 | 0.5576 |
0.5421 | 50.0009 | 8874 | 6.4143 | 0.8129 | 0.5605 |
0.5414 | 51.0009 | 9048 | 7.5933 | 0.8122 | 0.5526 |
0.5213 | 52.0009 | 9222 | 7.8657 | 0.8125 | 0.5680 |
0.5074 | 53.0009 | 9396 | 7.6091 | 0.8166 | 0.5684 |
0.5041 | 54.0009 | 9570 | 7.9929 | 0.8221 | 0.5799 |
0.5018 | 55.0009 | 9744 | 9.0274 | 0.8245 | 0.5757 |
0.5 | 56.0009 | 9918 | 8.6587 | 0.8306 | 0.5870 |
0.4869 | 57.0009 | 10092 | 7.6765 | 0.8275 | 0.5901 |
0.4693 | 58.0009 | 10266 | 8.8191 | 0.8326 | 0.5965 |
0.4627 | 59.0009 | 10440 | 10.0637 | 0.8315 | 0.6004 |
0.4596 | 60.0008 | 10614 | 8.1679 | 0.8370 | 0.6042 |
0.4518 | 61.0008 | 10788 | 8.4349 | 0.8359 | 0.6036 |
0.4385 | 62.0008 | 10962 | 9.2130 | 0.8369 | 0.6038 |
0.4378 | 63.0008 | 11136 | 9.3141 | 0.8403 | 0.6101 |
0.4336 | 64.0008 | 11310 | 9.0886 | 0.8385 | 0.6147 |
0.4221 | 65.0008 | 11484 | 8.8874 | 0.8412 | 0.6167 |
0.418 | 66.0008 | 11658 | 8.3751 | 0.8392 | 0.6154 |
0.4143 | 67.0008 | 11832 | 8.4800 | 0.8473 | 0.6248 |
0.4222 | 68.0008 | 12006 | 8.5978 | 0.8522 | 0.6383 |
0.3991 | 69.0008 | 12180 | 8.9944 | 0.8506 | 0.6304 |
0.4036 | 70.0008 | 12354 | 10.3317 | 0.8483 | 0.6353 |
0.401 | 71.0008 | 12528 | 8.8000 | 0.8547 | 0.6419 |
0.3967 | 72.0008 | 12702 | 10.1595 | 0.8592 | 0.6489 |
0.3919 | 73.0007 | 12876 | 7.7002 | 0.8537 | 0.6402 |
0.3801 | 74.0007 | 13050 | 7.3951 | 0.8569 | 0.6521 |
0.3841 | 75.0007 | 13224 | 8.1720 | 0.8530 | 0.6475 |
0.3697 | 76.0007 | 13398 | 7.3588 | 0.8532 | 0.6478 |
0.3756 | 77.0007 | 13572 | 7.8917 | 0.8565 | 0.6525 |
0.376 | 78.0007 | 13746 | 6.6505 | 0.8564 | 0.6524 |
0.3696 | 79.0007 | 13920 | 7.3225 | 0.8669 | 0.6651 |
0.3655 | 80.0007 | 14094 | 7.7997 | 0.8628 | 0.6598 |
0.3671 | 81.0007 | 14268 | 6.8883 | 0.8652 | 0.6684 |
0.3511 | 82.0007 | 14442 | 7.2238 | 0.8610 | 0.6628 |
0.3467 | 83.0007 | 14616 | 7.2216 | 0.8718 | 0.6778 |
0.3451 | 84.0007 | 14790 | 5.8581 | 0.8646 | 0.6654 |
0.3479 | 85.0007 | 14964 | 6.7665 | 0.8710 | 0.6779 |
0.3427 | 86.0007 | 15138 | 6.9367 | 0.8635 | 0.6597 |
0.3357 | 87.0006 | 15312 | 6.8716 | 0.8669 | 0.6714 |
0.3347 | 88.0006 | 15486 | 7.3971 | 0.8720 | 0.6845 |
0.3363 | 89.0006 | 15660 | 7.4414 | 0.8675 | 0.6734 |
0.3349 | 90.0006 | 15834 | 7.6525 | 0.8723 | 0.6831 |
0.3328 | 91.0006 | 16008 | 7.3987 | 0.8677 | 0.6816 |
0.339 | 92.0006 | 16182 | 6.7756 | 0.8691 | 0.6776 |
0.3244 | 93.0006 | 16356 | 7.5267 | 0.8681 | 0.6821 |
0.3246 | 94.0006 | 16530 | 6.1880 | 0.8721 | 0.6851 |
0.3181 | 95.0006 | 16704 | 6.6994 | 0.8756 | 0.6883 |
0.3209 | 96.0006 | 16878 | 6.3240 | 0.8685 | 0.6768 |
0.3266 | 97.0006 | 17052 | 6.5154 | 0.8770 | 0.6915 |
0.3167 | 98.0006 | 17226 | 5.9771 | 0.8722 | 0.6943 |
0.3194 | 99.0006 | 17400 | 5.5076 | 0.8760 | 0.6924 |
0.3201 | 100.0005 | 17574 | 5.8461 | 0.8798 | 0.7009 |
0.3167 | 101.0005 | 17748 | 6.4426 | 0.8754 | 0.7015 |
0.3087 | 102.0005 | 17922 | 6.5166 | 0.8750 | 0.6961 |
0.3146 | 103.0005 | 18096 | 5.5320 | 0.8811 | 0.7013 |
0.3088 | 104.0005 | 18270 | 5.7319 | 0.8779 | 0.6971 |
0.3116 | 105.0005 | 18444 | 5.8537 | 0.8770 | 0.7026 |
0.3117 | 106.0005 | 18618 | 5.7541 | 0.8801 | 0.7103 |
0.3032 | 107.0005 | 18792 | 5.9563 | 0.8817 | 0.7082 |
0.3051 | 108.0005 | 18966 | 5.4975 | 0.8825 | 0.7052 |
0.3022 | 109.0005 | 19140 | 4.7743 | 0.8846 | 0.7058 |
0.3025 | 110.0005 | 19314 | 5.4460 | 0.8819 | 0.7073 |
0.2993 | 111.0005 | 19488 | 5.4186 | 0.8780 | 0.7033 |
0.3009 | 112.0005 | 19662 | 5.1009 | 0.8819 | 0.7075 |
0.2974 | 113.0005 | 19836 | 6.2867 | 0.8826 | 0.7066 |
0.2926 | 114.0004 | 20010 | 5.3547 | 0.8857 | 0.7144 |
0.2917 | 115.0004 | 20184 | 4.6978 | 0.8822 | 0.7113 |
0.2961 | 116.0004 | 20358 | 5.6941 | 0.8848 | 0.7138 |
0.2946 | 117.0004 | 20532 | 5.7652 | 0.8830 | 0.7154 |
0.2855 | 118.0004 | 20706 | 5.2779 | 0.8810 | 0.7127 |
0.294 | 119.0004 | 20880 | 5.4494 | 0.8830 | 0.7174 |
0.2949 | 120.0004 | 21054 | 4.9102 | 0.8863 | 0.7207 |
0.2953 | 121.0004 | 21228 | 5.4646 | 0.8819 | 0.7089 |
0.2885 | 122.0004 | 21402 | 5.2363 | 0.8852 | 0.7265 |
0.2953 | 123.0004 | 21576 | 5.3327 | 0.8848 | 0.7209 |
0.2905 | 124.0004 | 21750 | 4.6292 | 0.8860 | 0.7214 |
0.2872 | 125.0004 | 21924 | 4.7491 | 0.8840 | 0.7196 |
0.2883 | 126.0004 | 22098 | 5.4074 | 0.8891 | 0.7215 |
0.2867 | 127.0003 | 22272 | 5.2755 | 0.8835 | 0.7228 |
0.2914 | 128.0003 | 22446 | 4.4630 | 0.8900 | 0.7268 |
0.289 | 129.0003 | 22620 | 4.6869 | 0.8842 | 0.7226 |
0.2873 | 130.0003 | 22794 | 4.5551 | 0.8854 | 0.7192 |
0.2829 | 131.0003 | 22968 | 4.4850 | 0.8913 | 0.7287 |
0.2829 | 132.0003 | 23142 | 4.1853 | 0.8880 | 0.7264 |
0.2836 | 133.0003 | 23316 | 4.4679 | 0.8886 | 0.7237 |
0.282 | 134.0003 | 23490 | 5.3415 | 0.8836 | 0.7225 |
0.278 | 135.0003 | 23664 | 5.0775 | 0.8909 | 0.7267 |
0.2784 | 136.0003 | 23838 | 5.0476 | 0.8917 | 0.7322 |
0.2797 | 137.0003 | 24012 | 4.5069 | 0.8936 | 0.7322 |
0.2758 | 138.0003 | 24186 | 4.3858 | 0.8898 | 0.7293 |
0.2819 | 139.0003 | 24360 | 5.0124 | 0.8890 | 0.7335 |
0.2821 | 140.0003 | 24534 | 4.4299 | 0.8929 | 0.7414 |
0.2752 | 141.0002 | 24708 | 4.6434 | 0.8898 | 0.7315 |
0.2763 | 142.0002 | 24882 | 4.8096 | 0.8912 | 0.7262 |
0.2743 | 143.0002 | 25056 | 4.8188 | 0.8923 | 0.7330 |
0.2756 | 144.0002 | 25230 | 4.1003 | 0.8911 | 0.7322 |
0.2754 | 145.0002 | 25404 | 4.1141 | 0.8877 | 0.7264 |
0.2701 | 146.0002 | 25578 | 4.1455 | 0.8923 | 0.7350 |
0.2701 | 147.0002 | 25752 | 4.2590 | 0.8955 | 0.7348 |
0.2706 | 148.0002 | 25926 | 4.9214 | 0.8918 | 0.7321 |
0.2689 | 149.0002 | 26100 | 4.4422 | 0.8938 | 0.7345 |
0.2709 | 150.0002 | 26274 | 4.4412 | 0.8848 | 0.7243 |
0.2714 | 151.0002 | 26448 | 3.6271 | 0.8878 | 0.7280 |
0.2708 | 152.0002 | 26622 | 4.6959 | 0.8954 | 0.7410 |
0.268 | 153.0002 | 26796 | 4.9066 | 0.8936 | 0.7398 |
0.2655 | 154.0001 | 26970 | 4.6026 | 0.8961 | 0.7385 |
0.2643 | 155.0001 | 27144 | 4.3143 | 0.8950 | 0.7380 |
0.2661 | 156.0001 | 27318 | 4.2562 | 0.8916 | 0.7354 |
0.2684 | 157.0001 | 27492 | 4.1381 | 0.8909 | 0.7354 |
0.2605 | 158.0001 | 27666 | 4.0520 | 0.8945 | 0.7373 |
0.2606 | 159.0001 | 27840 | 4.4116 | 0.8917 | 0.7390 |
0.2623 | 160.0001 | 28014 | 3.8049 | 0.8912 | 0.7342 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support