ht-stmini-cls-v6_ftis_noPretrain-msm-pos

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8172
  • Accuracy: 0.8925
  • Macro F1: 0.7511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 6733
  • training_steps: 134675

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1
59.3464 0.0013 169 38.9204 0.0790 0.0371
25.3687 1.0012 338 95.5343 0.1876 0.0584
7.8147 2.0012 507 195.3371 0.4964 0.1235
6.8891 3.0012 676 191.6926 0.5398 0.1325
6.2177 4.0012 845 216.1844 0.5697 0.1383
5.4678 5.0012 1014 189.3503 0.5881 0.1441
4.9594 6.0012 1183 137.5813 0.5951 0.1504
4.1078 7.0012 1352 94.4770 0.6093 0.1529
3.5533 8.0012 1521 64.6198 0.6143 0.1643
3.2608 9.0012 1690 45.8943 0.6192 0.1693
2.9641 10.0012 1859 39.1380 0.6195 0.1724
2.7522 11.0012 2028 33.9856 0.6396 0.1836
2.7176 12.0012 2197 29.4991 0.6150 0.1799
2.5893 13.0012 2366 22.8487 0.6356 0.2027
2.457 14.0012 2535 19.0762 0.6483 0.2075
2.4692 15.0011 2704 16.5434 0.6498 0.2202
2.309 16.0011 2873 14.8761 0.6640 0.2347
2.3723 17.0011 3042 12.4455 0.6624 0.2501
2.2035 18.0011 3211 12.1223 0.6490 0.2582
2.1096 19.0011 3380 12.5485 0.6854 0.2777
1.9845 20.0011 3549 10.0986 0.6758 0.2975
1.9108 21.0011 3718 10.0700 0.6911 0.3001
1.9174 22.0011 3887 6.9076 0.7244 0.3483
1.8328 23.0011 4056 9.2308 0.7231 0.3387
1.6883 24.0011 4225 7.6798 0.7277 0.3699
1.6764 25.0011 4394 7.3750 0.7291 0.3764
1.5494 26.0011 4563 7.9343 0.7419 0.3963
1.4642 27.0011 4732 10.0410 0.7604 0.4199
1.3226 28.0010 4901 7.8654 0.7586 0.4226
1.3147 29.0010 5070 9.4925 0.7783 0.4468
1.2191 30.0010 5239 9.3531 0.7751 0.4472
1.2129 31.0010 5408 9.6055 0.7794 0.4657
1.1316 32.0010 5577 9.9082 0.7883 0.4837
1.1428 33.0010 5746 10.4082 0.7953 0.4963
1.086 34.0010 5915 10.5887 0.8013 0.5049
0.9935 35.0010 6084 9.5130 0.7909 0.4851
0.976 36.0010 6253 11.5568 0.7926 0.5008
0.9635 37.0010 6422 14.4823 0.8069 0.5124
0.8799 38.0010 6591 12.5622 0.7883 0.5165
0.9134 39.0010 6760 14.6331 0.8065 0.5279
0.7942 40.0010 6929 14.0959 0.8103 0.5368
0.7707 41.0010 7098 14.0539 0.7993 0.5011
0.7535 42.0009 7267 12.6058 0.8070 0.5297
0.6551 43.0009 7436 16.7901 0.8179 0.5502
0.6933 44.0009 7605 15.4039 0.8189 0.5602
0.6253 45.0009 7774 17.1676 0.8196 0.5664
0.5847 46.0009 7943 17.8274 0.8237 0.5642
0.5747 47.0009 8112 18.4719 0.8216 0.5661
0.5041 48.0009 8281 17.1367 0.8210 0.5588
0.5139 49.0009 8450 16.5208 0.8356 0.5884
0.4726 50.0009 8619 21.7155 0.8230 0.5779
0.4511 51.0009 8788 22.6982 0.8353 0.5928
0.4668 52.0009 8957 19.2348 0.8347 0.5851
0.3898 53.0009 9126 18.7129 0.8342 0.5923
0.3695 54.0009 9295 18.8422 0.8399 0.5990
0.3801 55.0008 9464 18.5114 0.8413 0.6028
0.3443 56.0008 9633 16.4898 0.8432 0.6050
0.3616 57.0008 9802 18.9793 0.8486 0.6226
0.3354 58.0008 9971 17.3367 0.8461 0.6132
0.3294 59.0008 10140 18.4233 0.8450 0.6191
0.3136 60.0008 10309 18.7376 0.8482 0.6177
0.2854 61.0008 10478 15.7951 0.8552 0.6289
0.2838 62.0008 10647 17.5900 0.8503 0.6238
0.2536 63.0008 10816 16.5078 0.8525 0.6307
0.2617 64.0008 10985 17.8552 0.8454 0.6350
0.2461 65.0008 11154 16.2489 0.8569 0.6432
0.237 66.0008 11323 12.4754 0.8532 0.6423
0.2176 67.0008 11492 10.9631 0.8579 0.6467
0.2119 68.0007 11661 13.9939 0.8601 0.6474
0.2068 69.0007 11830 12.4334 0.8532 0.6404
0.1956 70.0007 11999 14.0338 0.8593 0.6504
0.1878 71.0007 12168 11.7233 0.8602 0.6506
0.1875 72.0007 12337 10.3088 0.8642 0.6645
0.2062 73.0007 12506 9.0553 0.8611 0.6599
0.1822 74.0007 12675 7.1633 0.8624 0.6625
0.171 75.0007 12844 8.1621 0.8593 0.6589
0.165 76.0007 13013 7.7144 0.8647 0.6712
0.1602 77.0007 13182 8.1336 0.8627 0.6610
0.1586 78.0007 13351 6.4341 0.8619 0.6650
0.154 79.0007 13520 6.1606 0.8663 0.6677
0.1455 80.0007 13689 6.5879 0.8625 0.6630
0.1442 81.0007 13858 6.1570 0.8701 0.6782
0.1419 82.0006 14027 6.2919 0.8675 0.6719
0.1372 83.0006 14196 5.1177 0.8662 0.6750
0.1181 84.0006 14365 4.8350 0.8666 0.6795
0.1252 85.0006 14534 4.3481 0.8711 0.6811
0.1269 86.0006 14703 4.7319 0.8656 0.6819
0.123 87.0006 14872 4.7458 0.8714 0.6839
0.1278 88.0006 15041 3.9598 0.8708 0.6858
0.1122 89.0006 15210 3.5908 0.8754 0.6937
0.117 90.0006 15379 3.8412 0.8721 0.6865
0.1141 91.0006 15548 3.8014 0.8730 0.6889
0.1064 92.0006 15717 3.6323 0.8726 0.6889
0.1106 93.0006 15886 3.5584 0.8734 0.6908
0.1019 94.0006 16055 3.3942 0.8738 0.6897
0.0961 95.0005 16224 3.2197 0.8749 0.6961
0.0992 96.0005 16393 3.3110 0.8706 0.6976
0.1046 97.0005 16562 2.9395 0.8757 0.6981
0.0967 98.0005 16731 3.0819 0.8715 0.6927
0.0852 99.0005 16900 2.7328 0.8725 0.6929
0.0909 100.0005 17069 2.6428 0.8763 0.7052
0.0884 101.0005 17238 2.6717 0.8754 0.7019
0.0877 102.0005 17407 2.6857 0.8721 0.7029
0.0787 103.0005 17576 2.5938 0.8768 0.7032
0.0849 104.0005 17745 2.5608 0.8771 0.7090
0.08 105.0005 17914 2.5091 0.8756 0.6984
0.074 106.0005 18083 2.5128 0.8803 0.7063
0.0714 107.0005 18252 2.4161 0.8773 0.7068
0.0771 108.0005 18421 2.2031 0.8794 0.7094
0.0895 109.0004 18590 2.4464 0.8804 0.7163
0.0728 110.0004 18759 2.3420 0.8759 0.7125
0.0971 111.0004 18928 2.3484 0.8781 0.7017
0.0752 112.0004 19097 2.2271 0.8790 0.7178
0.067 113.0004 19266 2.4369 0.8765 0.7120
0.0741 114.0004 19435 2.2862 0.8777 0.7139
0.0738 115.0004 19604 2.2621 0.8785 0.7091
0.062 116.0004 19773 2.3678 0.8787 0.7111
0.0747 117.0004 19942 2.4907 0.8745 0.6961
0.0653 118.0004 20111 2.1874 0.8827 0.7161
0.0658 119.0004 20280 2.0325 0.8838 0.7217
0.0652 120.0004 20449 2.1266 0.8820 0.7156
0.0597 121.0004 20618 2.1654 0.8801 0.7149
0.0757 122.0003 20787 1.9499 0.8866 0.7287
0.0593 123.0003 20956 2.2619 0.8791 0.7118
0.0576 124.0003 21125 2.1054 0.8829 0.7184
0.0616 125.0003 21294 2.1809 0.8796 0.7182
0.0601 126.0003 21463 1.8629 0.8872 0.7277
0.0548 127.0003 21632 2.1090 0.8821 0.7166
0.0572 128.0003 21801 2.2149 0.8784 0.7153
0.0561 129.0003 21970 1.9411 0.8856 0.7303
0.0554 130.0003 22139 2.0311 0.8813 0.7183
0.0509 131.0003 22308 2.1824 0.8839 0.7188
0.0616 132.0003 22477 2.1547 0.8830 0.7189
0.0511 133.0003 22646 2.0628 0.8816 0.7195
0.0491 134.0003 22815 1.9718 0.8859 0.7266
0.0564 135.0003 22984 2.0992 0.8835 0.7223
0.0477 136.0002 23153 1.9783 0.8828 0.7216
0.049 137.0002 23322 2.1633 0.8851 0.7205
0.0448 138.0002 23491 2.0866 0.8815 0.7248
0.0508 139.0002 23660 2.2082 0.8861 0.7229
0.0561 140.0002 23829 2.0297 0.8831 0.7263
0.0476 141.0002 23998 2.1306 0.8822 0.7247
0.0562 142.0002 24167 2.2599 0.8819 0.7182
0.0433 143.0002 24336 2.0900 0.8846 0.7249
0.0454 144.0002 24505 2.0576 0.8852 0.7280
0.0439 145.0002 24674 1.9070 0.8861 0.7354
0.0427 146.0002 24843 1.9406 0.8859 0.7255
0.0435 147.0002 25012 1.8753 0.8858 0.7350
0.0386 148.0002 25181 2.0958 0.8831 0.7261
0.0421 149.0001 25350 2.0531 0.8840 0.7237
0.0418 150.0001 25519 2.0721 0.8848 0.7228
0.0392 151.0001 25688 2.2118 0.8828 0.7232
0.0431 152.0001 25857 2.3609 0.8840 0.7200
0.0449 153.0001 26026 1.9814 0.8851 0.7302
0.0395 154.0001 26195 1.9841 0.8889 0.7342
0.0428 155.0001 26364 2.1003 0.8851 0.7314
0.0378 156.0001 26533 2.0011 0.8899 0.7357
0.0417 157.0001 26702 1.9045 0.8885 0.7313
0.0369 158.0001 26871 2.1463 0.8817 0.7237
0.0381 159.0001 27040 1.8939 0.8891 0.7359
0.039 160.0001 27209 2.1339 0.8860 0.7280
0.0409 161.0001 27378 2.0200 0.8849 0.7332
0.0357 162.0001 27547 1.9856 0.8894 0.7385
0.0388 163.0000 27716 1.8941 0.8889 0.7352
0.0405 164.0000 27885 2.1008 0.8845 0.7219
0.0392 165.0000 28054 2.0878 0.8837 0.7295
0.0361 166.0000 28223 1.8980 0.8880 0.7381
0.0353 167.0000 28392 1.9293 0.8882 0.7324
0.0344 168.0000 28561 1.8784 0.8889 0.7405
0.0327 168.0013 28730 1.8787 0.8903 0.7377
0.032 169.0013 28899 2.2492 0.8857 0.7300
0.0348 170.0012 29068 2.1504 0.8874 0.7359
0.0377 171.0012 29237 2.1245 0.8897 0.7373
0.0343 172.0012 29406 1.9574 0.8892 0.7370
0.0337 173.0012 29575 1.9612 0.8885 0.7381
0.0375 174.0012 29744 2.0124 0.8905 0.7427
0.0314 175.0012 29913 2.0747 0.8893 0.7352
0.0328 176.0012 30082 2.0896 0.8876 0.7319
0.0313 177.0012 30251 1.9872 0.8885 0.7355
0.0325 178.0012 30420 2.3101 0.8868 0.7323
0.0323 179.0012 30589 1.8263 0.8925 0.7511
0.0368 180.0012 30758 1.9961 0.8904 0.7403
0.0325 181.0012 30927 2.0162 0.8897 0.7433
0.0318 182.0012 31096 1.9951 0.8882 0.7396
0.033 183.0012 31265 1.7084 0.8951 0.7484
0.0308 184.0011 31434 2.0011 0.8884 0.7386
0.0302 185.0011 31603 1.9691 0.8909 0.7389
0.0312 186.0011 31772 2.0769 0.8913 0.7410
0.0334 187.0011 31941 2.1664 0.8862 0.7300
0.0295 188.0011 32110 2.1281 0.8898 0.7387
0.0287 189.0011 32279 2.3105 0.8861 0.7256
0.033 190.0011 32448 1.9435 0.8925 0.7389
0.029 191.0011 32617 2.0848 0.8894 0.7417
0.032 192.0011 32786 2.0616 0.8869 0.7329
0.029 193.0011 32955 2.1727 0.8867 0.7336
0.0254 194.0011 33124 2.1293 0.8911 0.7405
0.0263 195.0011 33293 2.0403 0.8916 0.7358
0.0283 196.0011 33462 2.1992 0.8904 0.7407
0.0308 197.0010 33631 2.1202 0.8900 0.7379
0.0274 198.0010 33800 2.0473 0.8911 0.7401
0.0255 199.0010 33969 2.1266 0.8914 0.7441

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
31.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support