ArtusDev's picture
Upload folder using huggingface_hub
375174f verified
|
raw
history blame
9.87 kB
---
base_model: unsloth/Llama-3.2-3B
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
</head>
<div class="container"><h1>GRMR-V3-L3B</h1><p>GRMR-V3-L3B is a fine-tuned version of <a href="https://huggingface.co/unsloth/Llama-3.2-3B">unsloth/Llama-3.2-3B</a> specifically optimized for grammar correction tasks.</p><div class="important-note"><p><strong>IMPORTANT:</strong> Please ensure you are using the following sampler settings for optimal results:</p><pre><code>temperature = 0.7
frequency_penalty = 0.0
presence_penalty = 0.0
min_p = 0.01
top_p = 0.95
top_k = 40</code></pre></div><h2>Model description</h2><p>GRMR-V3-L3B is a grammar correction model built on Meta's Llama 3.2 3B base model. It has been fine-tuned on a large dataset of grammar correction examples to help improve text quality by fixing grammatical errors, punctuation, spelling, and other language issues.</p><p>The model uses a specialized chat template that structures inputs as "text" and outputs as "corrected" to maintain a clear distinction between original and corrected content.</p><h3>Model Details</h3><div class="model-meta"><p><strong>Developed by:</strong> qingy2024</p><p><strong>Finetuned from model:</strong> <a href="https://huggingface.co/unsloth/Llama-3.2-3B">unsloth/Llama-3.2-3B</a></p><p><strong>Model type:</strong> Llama 3.2</p><p><strong>Language(s):</strong> English</p><p><strong>License:</strong> apache-2.0</p><p><strong>Training Dataset:</strong> <a href="https://huggingface.co/datasets/qingy2024/grmr-v4-60k">qingy2024/grmr-v4-60k</a></p></div><hr><h2>Manual Testing Examples</h2><p>Here are a few examples of grammar corrections this model can handle:</p><table><thead><tr><th>Original Text</th><th>Corrected Text</th></tr></thead><tbody><tr><td>i dont know weather to bring a umbrella today</td><td>I don't know whether to bring an umbrella today.</td></tr><tr><td>she go to the store yesterday</td><td>She went to the store yesterday.</td></tr><tr><td>they is going to be late for the meeting</td><td>They are going to be late for the meeting.</td></tr><tr><td>the cat laying on the floor all day</td><td>The cat is laying on the floor all day.</td></tr></tbody></table><hr><h2>Training procedure</h2><p>The model was fine-tuned using full parameter fine-tuning (not LoRA) on the GRMR-V4-60K dataset. The training was optimized using the Unsloth framework for efficient training of LLMs.</p><h3>Training hyperparameters</h3><ul><li><strong>Batch size:</strong> 8</li><li><strong>Gradient accumulation steps:</strong> 2</li><li><strong>Learning rate:</strong> 5e-5</li><li><strong>Epochs:</strong> 1</li><li><strong>Optimizer:</strong> AdamW (8-bit)</li><li><strong>Weight decay:</strong> 0.01</li><li><strong>LR scheduler:</strong> Cosine</li><li><strong>Warmup steps:</strong> 180</li><li><strong>Max sequence length:</strong> 16,384</li><li><strong>Training precision:</strong> Mixed precision (BF16 where available, FP16 otherwise)</li></ul><h2>Intended uses & limitations</h2><p>This model is designed for grammar correction tasks. It can be used to:</p><ul><li>Fix grammatical errors in written text</li><li>Correct punctuation</li><li>Address spelling mistakes</li><li>Improve sentence structure and clarity</li></ul><h3>Limitations</h3><ul><li>The model may struggle with highly technical or domain-specific content</li><li>It may not fully understand context-dependent grammar rules in all cases</li><li>Performance may vary for non-standard English or text with multiple errors</li></ul><h2>How to use</h2><p>llama.cpp and projects based on it should be able to run this model like any others.</p><p>For pure <code>transformers</code> code, you can refer here:</p><pre><code class="language-python">from transformers import AutoModelForCausalLM, AutoTokenizer# Load model and tokenizer
model_name = "qingy2024/GRMR-V3-L3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)# Text with grammar errors to correct
text_to_correct = "i am going to the store tommorow and buy some thing for dinner"# Format as messages
messages = [
{"role": "user", "content": text_to_correct}
]# Apply the custom chat template
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)# Tokenize and generate
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=512,
temperature=0.1, # NOTE: For best results, use the recommended temperature of 0.7
do_sample=True
)
# Decode and print the corrected text
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(corrected_text)</code></pre><h3>Using with the Hugging Face pipeline</h3><pre><code class="language-python">from transformers import pipeline
pipe = pipeline(
"text-generation",
model="qingy2024/GRMR-V3-L3B",
torch_dtype="auto",
device_map="auto"
)
messages = [
{"role": "user", "content": "i dont know weather to bring a umbrella today"}
]
result = pipe(
messages,
max_new_tokens=100,
temperature=0.1, # NOTE: For best results, use the recommended temperature of 0.7
do_sample=True,
return_full_text=False
)[0]["generated_text"]
print(result)</code></pre><p><em>Note: The Python examples above use <code>temperature=0.1</code> for reproducibility in quick tests. For optimal grammar correction quality, please use the recommended sampler settings, especially <code>temperature=0.7</code>.</em></p><h2>Custom Chat Template</h2><p class="chat-template-info">The model uses a custom chat template with special formatting for grammar correction:</p><ul><li>User inputs are formatted with <code><|start_header_id|>text<|end_header_id|></code> headers</li><li>Model outputs are formatted with <code><|start_header_id|>corrected<|end_header_id|></code> headers</li><li>Messages are separated by <code><|eot_id|></code> tokens</li><li>The chat template should work without any extra tweaking in vLLM or llama.cpp.</li></ul><h2>Training Dataset</h2><p>The model was fine-tuned on the <a href="https://huggingface.co/datasets/qingy2024/grmr-v4-60k">qingy2024/grmr-v4-60k</a> dataset, which contains 60,000 examples of original text and their grammatically corrected versions.</p><h2>Bias, Risks, and Limitations</h2><ul><li>The model may reflect biases present in the training data</li><li>It may not perform equally well across different writing styles or domains</li><li>The model might occasionally introduce errors or change the meaning of text</li><li>It focuses on grammatical correctness rather than stylistic improvements</li></ul><h2>Contact</h2><p>For questions or issues related to the model, please reach out via Hugging Face or by creating an issue in the repository.</p></div>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
line-height: 1.6;
margin: 0;
padding: 0;
background-color: #f8f9fa;
color: #333;
}
.container {
max-width: 1200px;
margin: 10px auto;
padding: 25px;
background-color: #ffffff;
border-radius: 8px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
}
h1, h2, h3 {
color: #0056b3; /* Primary Blue */
margin-top: 1.5em;
margin-bottom: 0.7em;
}
h1 {
text-align: center;
font-size: 2.2em;
border-bottom: 2px solid #e0e0e0;
padding-bottom: 0.5em;
margin-top: 0;
}
h2 {
font-size: 1.8em;
border-bottom: 1px solid #e9ecef;
padding-bottom: 0.3em;
}
h3 {
font-size: 1.4em;
color: #007bff; /* Lighter Blue for sub-headings */
}
p, li {
font-size: 1em;
color: #555;
}
a {
color: #007bff;
text-decoration: none;
}
a:hover {
text-decoration: underline;
color: #0056b3;
}
.important-note {
background-color: #e7f3ff; /* Light blue background */
border-left: 5px solid #007bff; /* Blue accent border */
margin: 20px 0px;
border-radius: 5px;
}
.important-note strong {
color: #0056b3;
font-weight: 600;
}
.important-note {
background-color: #d0e8ff;
padding: 0.05em 1.0em;
border-radius: 3px;
font-size: 0.9em;
}
code {
padding: 0.1em 0.4em;
border-radius: 3px;
font-size: 0.9em;
}
table {
width: 100%;
border-collapse: collapse;
margin: 20px 0;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
th, td {
border: 1px solid #dee2e6;
padding: 10px 12px;
text-align: left;
vertical-align: top;
}
th {
background-color: #e9ecef; /* Light gray for headers */
font-weight: 600;
color: #212529;
}
td:first-child {
/* font-style: italic; */
color: #444;
}
pre {
background-color: #f1f3f5;
padding: 15px;
border-radius: 5px;
overflow-x: auto;
border: 1px solid #ced4da;
font-size: 0.9em;
}
code {
font-family: "SFMono-Regular", Consolas, "Liberation Mono", Menlo, Courier, monospace;
background-color: #e9ecef;
padding: 0.2em 0.4em;
border-radius: 3px;
font-size: 0.9em;
}
pre code {
background-color: transparent;
padding: 0;
border-radius: 0;
font-size: 1em;
}
ul {
padding-left: 20px;
}
li {
margin-bottom: 0.5em;
}
hr {
border: none;
border-top: 1px solid #e0e0e0;
margin: 30px 0;
}
.model-meta {
background-color: #f8f9fa;
padding: 15px;
border-radius: 5px;
margin-bottom: 20px;
border: 1px solid #e9ecef;
}
.model-meta p { margin-bottom: 0.5em; }
.model-meta strong { color: #333; }
/* Specific styling for chat template explanation */
.chat-template-info span {
font-weight: bold;
color: #0056b3;
}
</style>