You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

# ===================================================================
# CONFIG: For a single, combined "Conversion & Debug" Model
# Using the stable 'alpaca' format.
# ===================================================================

# --- Core Model Configuration (Kept as requested) ---
base_model: mistralai/Mistral-Small-3.1-24B-Instruct-2503
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

# --- Performance, Quality, and Memory Optimization ---
flash_attention: true
load_in_4bit: true
load_in_8bit: false
adapter: lora

# --- Dataset Configuration (KEY CHANGE) ---
# Reverted to the stable 'alpaca' type.
# Axolotl will automatically look for 'instruction', 'input', 'output' fields.
datasets:
  - path: combined_dataset.jsonl # This is your new, flattened dataset
    type: alpaca

# --- Output Directory ---
output_dir: ./combined_model-finetune

# --- Training Hyperparameters ---
sequence_len: 2048
micro_batch_size: 1
gradient_accumulation_steps: 4
num_epochs: 3
learning_rate: 3e-5

# --- LoRA Configuration ---
lora_r: 16
lora_alpha: 32
lora_dropout: 0.15
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj

# --- Logging, Evaluation, and Saving (Kept as requested) ---
logging_steps: 2
evaluation_strategy: "steps"
eval_steps: 2
save_strategy: "steps"
save_steps: 9999
val_set_size: 0.05

special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

combined_model-finetune

This model is a fine-tuned version of mistralai/Mistral-Small-3.1-24B-Instruct-2503 on the combined_dataset.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1924

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 21

Training results

Training Loss Epoch Step Validation Loss
No log 0.1481 1 0.2836
0.2664 0.2963 2 0.2538
0.4832 0.5926 4 0.2200
0.3229 0.8889 6 0.2090
0.1517 1.1481 8 0.2022
0.3353 1.4444 10 0.2009
0.2418 1.7407 12 0.1958
0.0811 2.0 14 0.1942
0.0496 2.2963 16 0.1933
0.1906 2.5926 18 0.1927
0.3171 2.8889 20 0.1924

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for AryaGarg23/18-6-2025-newdata