Aryanne/flux_swap

This model is a merge of black-forest-labs/FLUX.1-dev and black-forest-labs/FLUX.1-schnell.

But different than others methods here the values in the tensors are not changed but substitute in a checkboard pattern with the values of FLUX.1-schnell, so ~50% of each is present here.(if my code is right)

from diffusers import FluxTransformer2DModel
from huggingface_hub import snapshot_download
from accelerate import init_empty_weights
from diffusers.models.model_loading_utils import load_model_dict_into_meta
import safetensors.torch
import glob
import torch
import gc




with init_empty_weights():
    config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer")
    model = FluxTransformer2DModel.from_config(config)

dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", allow_patterns="transformer/*")
schnell_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-schnell", allow_patterns="transformer/*")

dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors"))
schnell_shards = sorted(glob.glob(f"{schnell_ckpt}/transformer/*.safetensors"))

def swapping_method(base, x, parameters):
    def swap_values(shape, n, base, x):
        if x.dim() == 2:
           rows, cols = shape
           rows_range = torch.arange(rows).view(-1, 1)
           cols_range = torch.arange(cols).view(1, -1)
           mask = ((rows_range + cols_range) % n == 0).to(base.device.type).bool()
           x = torch.where(mask, x, base)
        else:
           rows_range = torch.arange(shape[0])
           mask = ((rows_range) % n == 0).to(base.device.type).bool()
           x = torch.where(mask, x, base)
        return x

    def rand_mask(base, x, percent, seed=None):
        oldseed = torch.seed()
        if seed is not None:
            torch.manual_seed(seed)
        random = torch.rand(base.shape)
        mask = (random <= percent).to(base.device.type).bool()
        del random
        torch.manual_seed(oldseed)
        x = torch.where(mask, x, base) 
        return x
    
   
    if x.device.type == "cpu":
         x = x.to(torch.bfloat16)
         base = base.to(torch.bfloat16)

    diagonal_offset = None
    diagonal_offset = parameters.get('diagonal_offset')
    random_mask = parameters.get('random_mask')
    random_mask_seed = parameters.get('random_mask_seed')
    random_mask_seed = int(random_mask_seed) if random_mask_seed is not None else random_mask_seed

    assert (diagonal_offset is not None) and (diagonal_offset % 1 == 0) and (diagonal_offset >= 2), "The diagonal_offset must be an integer greater than or equal to 2."
        
    if random_mask != 0.0:
       assert (random_mask is not None) and (random_mask < 1.0) and (random_mask > 0.0) , "The random_mask parameter can't be empty, 0, 1, or None, it must be a number between 0 and 1."
       assert random_mask_seed is None or (isinstance(random_mask_seed, int) and random_mask_seed % 1 == 0), "The random_mask_seed parameter must be None or an integer, None is a random seed."
       x = rand_mask(base, x, random_mask, random_mask_seed)

    else:
       if parameters.get('invert_offset') == False:
           x = swap_values(x.shape, diagonal_offset, base, x)
       else:
           x = swap_values(x.shape, diagonal_offset, x, base)

    del base
    return x

parameters = {
    'diagonal_offset': 2,      
    'random_mask': False,
    'invert_offset': False,       
   # 'random_mask_seed': "899557"
}








merged_state_dict = {}
guidance_state_dict = {}

for i in range(len((dev_shards))):
    state_dict_dev_temp = safetensors.torch.load_file(dev_shards[i])
    state_dict_schnell_temp = safetensors.torch.load_file(schnell_shards[i])

    keys = list(state_dict_dev_temp.keys())
    for k in keys:
        if "guidance" not in k:
            merged_state_dict[k] = swapping_method(state_dict_dev_temp.pop(k),state_dict_schnell_temp.pop(k), parameters)
        else:
            guidance_state_dict[k] = state_dict_dev_temp.pop(k)

    if len(state_dict_dev_temp) > 0:
        raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.")
    if len(state_dict_schnell_temp) > 0:
        raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.")




merged_state_dict.update(guidance_state_dict)
load_model_dict_into_meta(model, merged_state_dict)

model.to(torch.bfloat16).save_pretrained("merged-flux")

Used a piece of this code from mergekit

Thanks SayakPaul for your code which helped me do this merge.

Downloads last month
24
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Aryanne/flux_swap