SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AryehRotberg/ToS-Sentence-Transformers")
# Run inference
sentences = [
'Pexgle will need to share your information, including personal information, in order to ensure the adequate performance of our contract with you.',
'This service gives your personal data to third parties involved in its operation',
'Extra data may be collected about you through promotions',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
all-nli-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9993 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 150,468 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 48.6 tokens
- max: 256 tokens
- min: 6 tokens
- mean: 14.72 tokens
- max: 29 tokens
- min: 4 tokens
- mean: 14.26 tokens
- max: 29 tokens
- Samples:
anchor positive negative For all User Submissions, you hereby grant Guilded a license to translate, modify (for technical purposes, for example, making sure your content is viewable on a mobile device as well as a computer) and reproduce and otherwise act with respect to such User Submissions, in each case to enable us to operate the Services, as described in more detail below.
Copyright license limited for the purposes of that same service but transferable and sublicenseable
You are prohibited from sending chain letters, junk mail, spam or any unsolicited messages
Our data is stored in the EU or USA with robust physical, digital, and procedural safeguards in place to protect your personal data, including the use of SSL encryption, redundant servers and data centers, and sophisticated perimeter security. We continuously audit for security vulnerabilities and make software patching a priority.
Information is provided about security practices
The service disables software that you are not licensed to use.
No part of our Platform may be reproduced in any form or incorporated into any information retrieval system, electronic or mechanical, other than for your personal use. While using our Platform, you cannot redistribute your license (“Premium”, “Pro”, “Lite”) to anyone in any way that can make them use the features bound to your account. Unless otherwise specified, the developer tools and components, download areas, communication forums, and product information are for your personal and non-commercial use.
This service is only available for use individually and non-commercially.
Accessibility to this service is guaranteed at 99% or more
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 37,617 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 45.61 tokens
- max: 256 tokens
- min: 6 tokens
- mean: 14.64 tokens
- max: 29 tokens
- min: 6 tokens
- mean: 14.26 tokens
- max: 29 tokens
- Samples:
anchor positive negative non-exclusive, worldwide right and license to use,
The service has non-exclusive use of your content
You are not being tracked
We also reserve the right to suspend or end the Service at any time at our discretion and without notice. For example, we may suspend or terminate your use of the Service and remove Your Content if you’re not complying with these AUP Guidelines, or using the Service in a manner that may cause us legal liability, disrupt the Service, disrupt others’ use of the Service or, in our sole opinion, reason, cause harm.
Your account can be deleted or permanently suspended without prior notice and without a reason
The service claims to be CCPA compliant for California users
ExpressVPN uses mobile identifiers to generate statistics related to the marketing channels and advertising partners through which users learned about and signed up for ExpressVPN mobile apps.
You are tracked via web beacons, tracking pixels, browser fingerprinting, and/or device fingerprinting
Your personal data is used for advertising
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy |
---|---|---|---|---|
-1 | -1 | - | - | 0.9527 |
0.0106 | 100 | 1.3092 | 1.1396 | 0.9620 |
0.0213 | 200 | 1.0389 | 0.8936 | 0.9742 |
0.0319 | 300 | 0.8838 | 0.7500 | 0.9793 |
0.0425 | 400 | 0.7582 | 0.6477 | 0.9843 |
0.0532 | 500 | 0.6358 | 0.5727 | 0.9871 |
0.0638 | 600 | 0.6451 | 0.5158 | 0.9889 |
0.0744 | 700 | 0.4932 | 0.4715 | 0.9903 |
0.0851 | 800 | 0.4865 | 0.4355 | 0.9913 |
0.0957 | 900 | 0.4636 | 0.4035 | 0.9927 |
0.1063 | 1000 | 0.4406 | 0.3846 | 0.9930 |
0.1170 | 1100 | 0.3824 | 0.3691 | 0.9934 |
0.1276 | 1200 | 0.3967 | 0.3411 | 0.9944 |
0.1382 | 1300 | 0.3448 | 0.3264 | 0.9945 |
0.1489 | 1400 | 0.3372 | 0.3018 | 0.9955 |
0.1595 | 1500 | 0.3035 | 0.2941 | 0.9959 |
0.1701 | 1600 | 0.319 | 0.2864 | 0.9956 |
0.1808 | 1700 | 0.292 | 0.2743 | 0.9964 |
0.1914 | 1800 | 0.2647 | 0.2727 | 0.9965 |
0.2020 | 1900 | 0.2948 | 0.2517 | 0.9968 |
0.2127 | 2000 | 0.2583 | 0.2456 | 0.9971 |
0.2233 | 2100 | 0.2685 | 0.2352 | 0.9970 |
0.2339 | 2200 | 0.2879 | 0.2327 | 0.9969 |
0.2446 | 2300 | 0.2366 | 0.2271 | 0.9972 |
0.2552 | 2400 | 0.231 | 0.2164 | 0.9972 |
0.2658 | 2500 | 0.2639 | 0.2124 | 0.9973 |
0.2764 | 2600 | 0.2543 | 0.2078 | 0.9976 |
0.2871 | 2700 | 0.2261 | 0.2043 | 0.9972 |
0.2977 | 2800 | 0.2239 | 0.1976 | 0.9978 |
0.3083 | 2900 | 0.2271 | 0.1932 | 0.9977 |
0.3190 | 3000 | 0.2334 | 0.1845 | 0.9979 |
0.3296 | 3100 | 0.2021 | 0.1867 | 0.9981 |
0.3402 | 3200 | 0.2237 | 0.1762 | 0.9984 |
0.3509 | 3300 | 0.2109 | 0.1730 | 0.9983 |
0.3615 | 3400 | 0.2047 | 0.1663 | 0.9985 |
0.3721 | 3500 | 0.1904 | 0.1629 | 0.9984 |
0.3828 | 3600 | 0.1687 | 0.1643 | 0.9984 |
0.3934 | 3700 | 0.2071 | 0.1584 | 0.9984 |
0.4040 | 3800 | 0.1609 | 0.1543 | 0.9983 |
0.4147 | 3900 | 0.1862 | 0.1525 | 0.9984 |
0.4253 | 4000 | 0.1925 | 0.1504 | 0.9984 |
0.4359 | 4100 | 0.1714 | 0.1484 | 0.9985 |
0.4466 | 4200 | 0.2025 | 0.1472 | 0.9985 |
0.4572 | 4300 | 0.1427 | 0.1422 | 0.9986 |
0.4678 | 4400 | 0.1458 | 0.1401 | 0.9986 |
0.4785 | 4500 | 0.1796 | 0.1371 | 0.9985 |
0.4891 | 4600 | 0.1289 | 0.1317 | 0.9987 |
0.4997 | 4700 | 0.1427 | 0.1298 | 0.9988 |
0.5104 | 4800 | 0.1349 | 0.1313 | 0.9988 |
0.5210 | 4900 | 0.149 | 0.1293 | 0.9987 |
0.5316 | 5000 | 0.1633 | 0.1230 | 0.9988 |
0.5423 | 5100 | 0.1241 | 0.1240 | 0.9988 |
0.5529 | 5200 | 0.1532 | 0.1196 | 0.9988 |
0.5635 | 5300 | 0.1547 | 0.1173 | 0.9988 |
0.5742 | 5400 | 0.1652 | 0.1167 | 0.9990 |
0.5848 | 5500 | 0.1505 | 0.1120 | 0.9989 |
0.5954 | 5600 | 0.1309 | 0.1106 | 0.9990 |
0.6061 | 5700 | 0.1648 | 0.1089 | 0.9988 |
0.6167 | 5800 | 0.118 | 0.1070 | 0.9988 |
0.6273 | 5900 | 0.1207 | 0.1062 | 0.9988 |
0.6380 | 6000 | 0.1104 | 0.1046 | 0.9989 |
0.6486 | 6100 | 0.1262 | 0.1040 | 0.9989 |
0.6592 | 6200 | 0.1236 | 0.1008 | 0.9990 |
0.6699 | 6300 | 0.122 | 0.1005 | 0.9990 |
0.6805 | 6400 | 0.1244 | 0.1005 | 0.9991 |
0.6911 | 6500 | 0.1176 | 0.0998 | 0.9991 |
0.7018 | 6600 | 0.1215 | 0.0994 | 0.9991 |
0.7124 | 6700 | 0.1079 | 0.0983 | 0.9991 |
0.7230 | 6800 | 0.1099 | 0.0957 | 0.9991 |
0.7337 | 6900 | 0.1121 | 0.0950 | 0.9992 |
0.7443 | 7000 | 0.1137 | 0.0942 | 0.9992 |
0.7549 | 7100 | 0.1082 | 0.0929 | 0.9991 |
0.7656 | 7200 | 0.1047 | 0.0923 | 0.9991 |
0.7762 | 7300 | 0.1147 | 0.0904 | 0.9992 |
0.7868 | 7400 | 0.1336 | 0.0895 | 0.9991 |
0.7974 | 7500 | 0.1122 | 0.0889 | 0.9992 |
0.8081 | 7600 | 0.1126 | 0.0884 | 0.9993 |
0.8187 | 7700 | 0.116 | 0.0864 | 0.9992 |
0.8293 | 7800 | 0.0991 | 0.0857 | 0.9992 |
0.8400 | 7900 | 0.1091 | 0.0851 | 0.9992 |
0.8506 | 8000 | 0.1052 | 0.0846 | 0.9993 |
0.8612 | 8100 | 0.1105 | 0.0839 | 0.9992 |
0.8719 | 8200 | 0.1101 | 0.0836 | 0.9992 |
0.8825 | 8300 | 0.107 | 0.0832 | 0.9993 |
0.8931 | 8400 | 0.0867 | 0.0827 | 0.9993 |
0.9038 | 8500 | 0.0965 | 0.0823 | 0.9992 |
0.9144 | 8600 | 0.1108 | 0.0817 | 0.9993 |
0.9250 | 8700 | 0.1219 | 0.0814 | 0.9992 |
0.9357 | 8800 | 0.1169 | 0.0809 | 0.9992 |
0.9463 | 8900 | 0.0964 | 0.0805 | 0.9992 |
0.9569 | 9000 | 0.0939 | 0.0804 | 0.9992 |
0.9676 | 9100 | 0.0955 | 0.0803 | 0.9993 |
0.9782 | 9200 | 0.1076 | 0.0800 | 0.9993 |
0.9888 | 9300 | 0.1049 | 0.0798 | 0.9992 |
0.9995 | 9400 | 0.0826 | 0.0798 | 0.9993 |
Framework Versions
- Python: 3.9.19
- Sentence Transformers: 4.0.2
- Transformers: 4.48.1
- PyTorch: 2.4.1+cu124
- Accelerate: 1.6.0
- Datasets: 2.21.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for AryehRotberg/ToS-Sentence-Transformers
Base model
sentence-transformers/all-MiniLM-L6-v2