YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

English to Chinese Translation (Quantized Model)

This repository contains a quantized English-to-Chinese translation model fine-tuned on the ['wlhb/Transaltion-Chinese-2-English'] dataset and optimized using dynamic quantization for efficient CPU inference.

πŸ”§ Model Details

  • Base model: Helsinki-NLP/opus-mt-en-zh
  • Dataset: ['wlhb/Transaltion-Chinese-2-English']
  • Training platform: Kaggle (CUDA GPU)
  • Fine-tuned: On English-Chinese pairs from the Hugging Face dataset
  • Quantization: PyTorch Dynamic Quantization (torch.quantization.quantize_dynamic)
  • Tokenizer: Saved alongside the model

πŸ“ Folder Structure

quantized_model/ β”œβ”€β”€ config.json β”œβ”€β”€ pytorch_model.bin β”œβ”€β”€ tokenizer_config.json β”œβ”€β”€ tokenizer.json β”œβ”€β”€ vocab.json / merges.txt


πŸš€ Usage

πŸ”Ή 1. Load Quantized Model for Inference

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("./quantized_model")

# Load quantized model
model = AutoModelForSeq2SeqLM.from_pretrained("./quantized_model")
model.eval()

# Run translation
translator = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer, device=-1)

text = "How are you?"
print("English:", translator(text)[0]['translation_text'])

Model Training Summary

  • Loaded dataset: wlhb/Transaltion-Chinese-2-English

  • Mapped translation data: {"en": ..., "zh": ...} before training

  • Training: 3 epochs using GPU

  • Disabled: wandb logging

  • Skipped: Evaluation phase

  • Saved: Trained + Quantized model and tokenizer

  • Quantization: torch.quantization.Quantize_dynamic is used for efficient CPU inference

Downloads last month
7
Safetensors
Model size
77.5M params
Tensor type
F16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support