YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
π§ Food-Image-Classification-AI-Model
A Food image classification model fine-tuned on the Food-101 dataset using the powerful facebook/deit-base-patch16-224 architecture. This model classifies images into one of 101 popular food categories such as pizza, ramen, pad thai, sushi, and more.
β¨ Model Highlights
- π Base Model: facebook/deit-base-patch16-224
- π Datasets: Food-101 Data
- πΏ Classes: 101 food categories (e.g., pizza, ramen, steak, etc.)
- π§ Framework: Hugging Face Transformers + PyTorch
π§ Intended Uses
- β Food image classification in apps/web
- β Educational visual datasets
- β Food blog/media categorization
- β Restaurant ordering support systems
π« Limitations
- β May not perform well on poor-quality or mixed-food images
- β Not optimized for detecting multiple food items per image
ποΈββοΈ Training Details
Attribute | Value |
---|---|
Base Model | facebook/deit-base-patch16-224 |
Dataset | Food-101-Dataset |
Task Type | Image Classification |
Epochs | 3 |
Batch Size | 16 |
Optimizer | AdamW |
Loss Function | CrossEntropyLoss |
Framework | PyTorch + Transformers |
Hardware | CUDA-enabled GPU |
π Evaluation Metrics
Metric | Score |
---|---|
Accuracy | 0.97 |
F1-Score | 0.98 |
Precision | 0.99 |
Recall | 0.97 |
π Usage
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
# Load model and processor
model_name = "AventIQ-AI/Food-Classification-AI-Model"
model = AutoModelForImageClassification.from_pretrained("your-model-path")
processor = AutoImageProcessor.from_pretrained("your-model-path")
def predict(image_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
image = Image.open(image_path).convert("RGB")
transform = Compose([
Resize((224, 224)),
ToTensor(),
Normalize(mean=processor.image_mean, std=processor.image_std)
])
pixel_values = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
logits = outputs.logits
predicted_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_idx]
return predicted_label
# Example usage:
print(predict("Foodexample.jpg"))
- π§© Quantization
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
π Repository Structure
.
beans-vit-finetuned/
βββ config.json β
Model architecture & config
βββ pytorch_model.bin β
Model weights
βββ preprocessor_config.json β
Image processor config
βββ training_args.bin β
Training metadata
βββ README.md β
Model card
π€ Contributing
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support