πŸ“Š Model Card for bias-model-stereoset

🧠 Model Description

A BERT-based binary classification model trained to detect stereotypical bias in English text using the StereoSet dataset.

  • 1 β†’ Biased sentence
  • 0 β†’ Not biased sentence

πŸ“š Dataset

  • Dataset: StereoSet
  • Bias types: Gender, Race, Religion, Profession

πŸ› οΈ Training

  • Base model: bert-base-uncased
  • Trained for 3 epochs
  • Used Hugging Face Transformers + PyTorch
  • Evaluated using accuracy and F1

πŸ” Usage

from transformers import BertTokenizer, BertForSequenceClassification

tokenizer = BertTokenizer.from_pretrained("AymanKhan/bias-model-stereoset")
model = BertForSequenceClassification.from_pretrained("AymanKhan/bias-model-stereoset")

inputs = tokenizer("The people are fat and unathletic.", return_tensors="pt")
outputs = model(**inputs)
pred = outputs.logits.argmax(dim=1).item()

print("πŸ”΄ Biased" if pred == 1 else "🟒 Not Biased")
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train AymanKhan/bias-model-stereoset