π Model Card for bias-model-stereoset
π§ Model Description
A BERT-based binary classification model trained to detect stereotypical bias in English text using the StereoSet dataset.
1
β Biased sentence0
β Not biased sentence
π Dataset
- Dataset: StereoSet
- Bias types: Gender, Race, Religion, Profession
π οΈ Training
- Base model:
bert-base-uncased
- Trained for 3 epochs
- Used Hugging Face Transformers + PyTorch
- Evaluated using accuracy and F1
π Usage
from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained("AymanKhan/bias-model-stereoset")
model = BertForSequenceClassification.from_pretrained("AymanKhan/bias-model-stereoset")
inputs = tokenizer("The people are fat and unathletic.", return_tensors="pt")
outputs = model(**inputs)
pred = outputs.logits.argmax(dim=1).item()
print("π΄ Biased" if pred == 1 else "π’ Not Biased")
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support