Model Sources
- Paper: BERT
Uses
Direct Use
This model can be used for masked language modeling
Training
Training Procedure
- type_vocab_size: 2
- vocab_size: 21128
- num_hidden_layers: 12
Training Data
botp/yentinglin-zh_TW_c4
Evaluation
Dataset\BERT Pretrain | bert-based-chinese | ckiplab | GufoLab |
---|---|---|---|
5000 Tradition Chinese Dataset | 0.7183 | 0.6989 | 0.8081 |
10000 Sol-Idea Dataset | 0.7874 | 0.7913 | 0.8025 |
ALL DataSet | 0.7694 | 0.7678 | 0.8038 |
Results
Test ID\Results | [MASK] Input | Result Output |
---|---|---|
1 | 今天禮拜[MASK]?我[MASK]是很想[MASK]班。 | 今天禮拜六?我不是很想上班。 |
2 | [MASK]灣並[MASK]是[MASK]國不可分割的一部分。 | 臺灣並不是中國不可分割的一部分。 |
3 | 如果可以是韋[MASK]安的最新歌[MASK]。 | 如果可以是韋禮安的最新歌曲。 |
4 | [MASK]水老[MASK]有賣很多鐵蛋的攤販。 | 淡水老街有賣很多鐵蛋的攤販。 |
git-lfs Installation
$ curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
$ sudo apt-get install git-lfs
$ git lfs install
$ pip install huggingface_hub
How to Get Started With the Model
Login HuggingFace on Terminal
$ huggingface-cli login
Token:Your own huggingface token.
Login HuggingFace on Jupyter Notebook
from huggingface_hub import notebook_login
notebook_login()
Token:Your own huggingface token.
Pyhon Code
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('Azion/bert-based-chinese', use_auth_token=True)
model = AutoModelForMaskedLM.from_pretrained("Azion/bert-based-chinese", use_auth_token=True)
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.