NLP_90_1 / README.md
BDAIO's picture
End of training
3dc010b verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: NLP_90_1
    results: []

NLP_90_1

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3325
  • Accuracy: 0.9174
  • Precision: 0.9126
  • Recall: 0.9140
  • F1: 0.9128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3664 1.0 48 0.3609 0.8991 0.8935 0.8988 0.8938
0.2282 2.0 96 0.3376 0.8991 0.8920 0.8978 0.8927
0.1638 3.0 144 0.3184 0.9128 0.9070 0.9079 0.9070
0.1595 4.0 192 0.3291 0.9174 0.9147 0.9131 0.9135
0.1388 5.0 240 0.3495 0.8945 0.8844 0.8918 0.8865
0.1075 6.0 288 0.3357 0.9174 0.9151 0.9141 0.9139
0.1073 7.0 336 0.3311 0.9174 0.9126 0.9140 0.9128
0.1507 8.0 384 0.3325 0.9174 0.9126 0.9140 0.9128

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1