bart_prefix_finetune
This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.1378
- Rouge1: 0.4018
- Rouge2: 0.173
- Rougel: 0.2656
- Rougelsum: 0.3728
- Gen Len: 74.6267
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
3.6484 | 0.2786 | 10000 | 2.2900 | 0.3932 | 0.1633 | 0.251 | 0.3637 | 77.2435 |
2.7934 | 0.5573 | 20000 | 2.1941 | 0.3971 | 0.1677 | 0.2597 | 0.368 | 74.5763 |
2.6941 | 0.8359 | 30000 | 2.1688 | 0.3996 | 0.1699 | 0.2622 | 0.3702 | 75.5441 |
2.654 | 1.1145 | 40000 | 2.1533 | 0.4008 | 0.1716 | 0.2642 | 0.3713 | 74.3602 |
2.6302 | 1.3931 | 50000 | 2.1450 | 0.4016 | 0.1726 | 0.2648 | 0.3723 | 74.8291 |
2.6214 | 1.6718 | 60000 | 2.1411 | 0.4018 | 0.1725 | 0.2651 | 0.3727 | 75.1359 |
2.6178 | 1.9504 | 70000 | 2.1378 | 0.4018 | 0.173 | 0.2656 | 0.3728 | 74.6267 |
Framework versions
- PEFT 0.15.2
- Transformers 4.48.3
- Pytorch 2.6.0+cu126
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 312
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for BKVNP/bart_prefix_finetune
Base model
facebook/bart-base