bart_prefix_finetune

This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1378
  • Rouge1: 0.4018
  • Rouge2: 0.173
  • Rougel: 0.2656
  • Rougelsum: 0.3728
  • Gen Len: 74.6267

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.6484 0.2786 10000 2.2900 0.3932 0.1633 0.251 0.3637 77.2435
2.7934 0.5573 20000 2.1941 0.3971 0.1677 0.2597 0.368 74.5763
2.6941 0.8359 30000 2.1688 0.3996 0.1699 0.2622 0.3702 75.5441
2.654 1.1145 40000 2.1533 0.4008 0.1716 0.2642 0.3713 74.3602
2.6302 1.3931 50000 2.1450 0.4016 0.1726 0.2648 0.3723 74.8291
2.6214 1.6718 60000 2.1411 0.4018 0.1725 0.2651 0.3727 75.1359
2.6178 1.9504 70000 2.1378 0.4018 0.173 0.2656 0.3728 74.6267

Framework versions

  • PEFT 0.15.2
  • Transformers 4.48.3
  • Pytorch 2.6.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
312
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for BKVNP/bart_prefix_finetune

Base model

facebook/bart-base
Adapter
(50)
this model