beit-base-patch16-224-pt22k-ft22k-finetuned-stroke-binary

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on an "Binary Stroke Detection" dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2029
  • Accuracy: 0.9222
  • F1: 0.9214
  • Precision: 0.9234
  • Recall: 0.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 48
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7256 1.2477 100 0.6913 0.5685 0.4823 0.4731 0.5685
0.6695 2.4954 200 0.6480 0.6210 0.5164 0.5987 0.6210
0.5963 3.7430 300 0.5882 0.6725 0.6118 0.6993 0.6725
0.518 4.9907 400 0.4990 0.7481 0.7167 0.7891 0.7481
0.4325 6.2477 500 0.4090 0.8073 0.7957 0.8232 0.8073
0.3848 7.4954 600 0.3703 0.8340 0.8257 0.8482 0.8340
0.3532 8.7430 700 0.3958 0.8313 0.8201 0.8564 0.8313
0.3297 9.9907 800 0.3257 0.8611 0.8558 0.8718 0.8611
0.3281 11.2477 900 0.3169 0.8666 0.8612 0.8791 0.8666
0.2938 12.4954 1000 0.2814 0.8865 0.8841 0.8900 0.8865
0.2866 13.7430 1100 0.2828 0.8869 0.8837 0.8943 0.8869
0.2884 14.9907 1200 0.2929 0.8847 0.8810 0.8936 0.8847
0.2808 16.2477 1300 0.2458 0.9014 0.8999 0.9034 0.9014
0.258 17.4954 1400 0.2351 0.9091 0.9080 0.9102 0.9091
0.2744 18.7430 1500 0.2516 0.9014 0.8994 0.9057 0.9014
0.261 19.9907 1600 0.2453 0.9068 0.9050 0.9107 0.9068
0.2519 21.2477 1700 0.2564 0.8987 0.8961 0.9051 0.8987
0.2595 22.4954 1800 0.2318 0.9095 0.9079 0.9129 0.9095
0.2548 23.7430 1900 0.2196 0.9136 0.9128 0.9142 0.9136
0.2327 24.9907 2000 0.2376 0.9068 0.9050 0.9110 0.9068
0.2563 26.2477 2100 0.2421 0.9028 0.9005 0.9083 0.9028
0.2348 27.4954 2200 0.2213 0.9109 0.9095 0.9132 0.9109
0.2427 28.7430 2300 0.2308 0.9077 0.9060 0.9116 0.9077
0.2166 29.9907 2400 0.2152 0.9141 0.9128 0.9165 0.9141
0.2345 31.2477 2500 0.2283 0.9068 0.9049 0.9114 0.9068
0.2355 32.4954 2600 0.2173 0.9118 0.9103 0.9149 0.9118
0.2291 33.7430 2700 0.2149 0.9127 0.9113 0.9155 0.9127
0.2319 34.9907 2800 0.2123 0.9141 0.9127 0.9167 0.9141
0.222 36.2477 2900 0.2053 0.9181 0.9171 0.9197 0.9181
0.2235 37.4954 3000 0.2121 0.9141 0.9127 0.9166 0.9141
0.2221 38.7430 3100 0.2013 0.9195 0.9188 0.9200 0.9195
0.2262 39.9907 3200 0.2029 0.9222 0.9214 0.9234 0.9222
0.2171 41.2477 3300 0.2075 0.9181 0.9170 0.9202 0.9181
0.2268 42.4954 3400 0.2045 0.9190 0.9180 0.9208 0.9190
0.2222 43.7430 3500 0.2050 0.9204 0.9194 0.9222 0.9204
0.2169 44.9907 3600 0.2070 0.9177 0.9165 0.9197 0.9177
0.2245 46.2477 3700 0.2064 0.9181 0.9170 0.9201 0.9181
0.2148 47.4954 3800 0.2066 0.9181 0.9170 0.9201 0.9181

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0

image/png image/png image/png image/png image/png image/png image/png image/png image/png

Downloads last month
33
Safetensors
Model size
123M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BTX24/beit-base-patch16-224-pt22k-ft22k-finetuned-stroke-binary

Finetuned
(77)
this model

Dataset used to train BTX24/beit-base-patch16-224-pt22k-ft22k-finetuned-stroke-binary