dino-vitb8-finetuned-stroke-binary
This model is a fine-tuned version of facebook/dino-vitb8 on an - BTX24/tekno21-brain-stroke-dataset-binary dataset. It achieves the following results on the evaluation set:
- Loss: 0.1127
- Accuracy: 0.9597
- F1: 0.9595
- Precision: 0.9602
- Recall: 0.9597
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 36
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.7965 | 0.6202 | 100 | 0.8312 | 0.5382 | 0.5058 | 0.4968 | 0.5382 |
0.6839 | 1.2357 | 200 | 0.6796 | 0.6246 | 0.5750 | 0.5991 | 0.6246 |
0.5662 | 1.8558 | 300 | 0.5344 | 0.7318 | 0.7119 | 0.7377 | 0.7318 |
0.4408 | 2.4713 | 400 | 0.4082 | 0.8123 | 0.8082 | 0.8120 | 0.8123 |
0.3611 | 3.0868 | 500 | 0.3335 | 0.8602 | 0.8597 | 0.8596 | 0.8602 |
0.3121 | 3.7070 | 600 | 0.2746 | 0.8860 | 0.8832 | 0.8914 | 0.8860 |
0.2614 | 4.3225 | 700 | 0.2299 | 0.9050 | 0.9040 | 0.9058 | 0.9050 |
0.242 | 4.9426 | 800 | 0.2103 | 0.9177 | 0.9178 | 0.9179 | 0.9177 |
0.2239 | 5.5581 | 900 | 0.2298 | 0.9082 | 0.9090 | 0.9136 | 0.9082 |
0.1979 | 6.1736 | 1000 | 0.2059 | 0.9209 | 0.9197 | 0.9230 | 0.9209 |
0.2082 | 6.7938 | 1100 | 0.1779 | 0.9263 | 0.9261 | 0.9261 | 0.9263 |
0.1723 | 7.4093 | 1200 | 0.1693 | 0.9308 | 0.9302 | 0.9315 | 0.9308 |
0.1877 | 8.0248 | 1300 | 0.1681 | 0.9380 | 0.9382 | 0.9385 | 0.9380 |
0.2 | 8.6450 | 1400 | 0.1482 | 0.9403 | 0.9402 | 0.9402 | 0.9403 |
0.1642 | 9.2605 | 1500 | 0.1637 | 0.9331 | 0.9322 | 0.9352 | 0.9331 |
0.1525 | 9.8806 | 1600 | 0.1494 | 0.9421 | 0.9417 | 0.9425 | 0.9421 |
0.158 | 10.4961 | 1700 | 0.1403 | 0.9484 | 0.9480 | 0.9495 | 0.9484 |
0.1327 | 11.1116 | 1800 | 0.1329 | 0.9498 | 0.9498 | 0.9498 | 0.9498 |
0.1465 | 11.7318 | 1900 | 0.1233 | 0.9525 | 0.9524 | 0.9525 | 0.9525 |
0.1311 | 12.3473 | 2000 | 0.1280 | 0.9521 | 0.9520 | 0.9520 | 0.9521 |
0.129 | 12.9674 | 2100 | 0.1173 | 0.9557 | 0.9556 | 0.9556 | 0.9557 |
0.1425 | 13.5829 | 2200 | 0.1190 | 0.9552 | 0.9552 | 0.9552 | 0.9552 |
0.1256 | 14.1984 | 2300 | 0.1225 | 0.9566 | 0.9563 | 0.9570 | 0.9566 |
0.1461 | 14.8186 | 2400 | 0.1171 | 0.9588 | 0.9588 | 0.9588 | 0.9588 |
0.133 | 15.4341 | 2500 | 0.1165 | 0.9548 | 0.9546 | 0.9549 | 0.9548 |
0.1258 | 16.0496 | 2600 | 0.1302 | 0.9480 | 0.9474 | 0.9500 | 0.9480 |
0.115 | 16.6698 | 2700 | 0.1320 | 0.9534 | 0.9537 | 0.9552 | 0.9534 |
0.1134 | 17.2853 | 2800 | 0.1171 | 0.9552 | 0.9549 | 0.9562 | 0.9552 |
0.1069 | 17.9054 | 2900 | 0.1127 | 0.9597 | 0.9595 | 0.9602 | 0.9597 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for BTX24/dino-vitb8-finetuned-stroke-binary
Base model
facebook/dino-vitb8