dino-vitb8-finetuned-stroke-binary

This model is a fine-tuned version of facebook/dino-vitb8 on an - BTX24/tekno21-brain-stroke-dataset-binary dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1127
  • Accuracy: 0.9597
  • F1: 0.9595
  • Precision: 0.9602
  • Recall: 0.9597

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 36
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7965 0.6202 100 0.8312 0.5382 0.5058 0.4968 0.5382
0.6839 1.2357 200 0.6796 0.6246 0.5750 0.5991 0.6246
0.5662 1.8558 300 0.5344 0.7318 0.7119 0.7377 0.7318
0.4408 2.4713 400 0.4082 0.8123 0.8082 0.8120 0.8123
0.3611 3.0868 500 0.3335 0.8602 0.8597 0.8596 0.8602
0.3121 3.7070 600 0.2746 0.8860 0.8832 0.8914 0.8860
0.2614 4.3225 700 0.2299 0.9050 0.9040 0.9058 0.9050
0.242 4.9426 800 0.2103 0.9177 0.9178 0.9179 0.9177
0.2239 5.5581 900 0.2298 0.9082 0.9090 0.9136 0.9082
0.1979 6.1736 1000 0.2059 0.9209 0.9197 0.9230 0.9209
0.2082 6.7938 1100 0.1779 0.9263 0.9261 0.9261 0.9263
0.1723 7.4093 1200 0.1693 0.9308 0.9302 0.9315 0.9308
0.1877 8.0248 1300 0.1681 0.9380 0.9382 0.9385 0.9380
0.2 8.6450 1400 0.1482 0.9403 0.9402 0.9402 0.9403
0.1642 9.2605 1500 0.1637 0.9331 0.9322 0.9352 0.9331
0.1525 9.8806 1600 0.1494 0.9421 0.9417 0.9425 0.9421
0.158 10.4961 1700 0.1403 0.9484 0.9480 0.9495 0.9484
0.1327 11.1116 1800 0.1329 0.9498 0.9498 0.9498 0.9498
0.1465 11.7318 1900 0.1233 0.9525 0.9524 0.9525 0.9525
0.1311 12.3473 2000 0.1280 0.9521 0.9520 0.9520 0.9521
0.129 12.9674 2100 0.1173 0.9557 0.9556 0.9556 0.9557
0.1425 13.5829 2200 0.1190 0.9552 0.9552 0.9552 0.9552
0.1256 14.1984 2300 0.1225 0.9566 0.9563 0.9570 0.9566
0.1461 14.8186 2400 0.1171 0.9588 0.9588 0.9588 0.9588
0.133 15.4341 2500 0.1165 0.9548 0.9546 0.9549 0.9548
0.1258 16.0496 2600 0.1302 0.9480 0.9474 0.9500 0.9480
0.115 16.6698 2700 0.1320 0.9534 0.9537 0.9552 0.9534
0.1134 17.2853 2800 0.1171 0.9552 0.9549 0.9562 0.9552
0.1069 17.9054 2900 0.1127 0.9597 0.9595 0.9602 0.9597

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0

image/png image/png image/png image/png image/png image/png image/png image/png image/png image/png

Downloads last month
4
Safetensors
Model size
123M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BTX24/dino-vitb8-finetuned-stroke-binary

Finetuned
(1)
this model

Dataset used to train BTX24/dino-vitb8-finetuned-stroke-binary