BTX24's picture
Update README.md
fbeaa62 verified
metadata
library_name: transformers
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: hiera-finetuned-busi
    results: []

hiera-finetuned-busi

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1380
  • Accuracy: 0.9679
  • F1: 0.9678
  • Precision: 0.9678
  • Recall: 0.9679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 48
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2276 10.0 100 0.1666 0.9615 0.9611 0.9640 0.9615
0.1447 20.0 200 0.1826 0.9359 0.9352 0.9426 0.9359
0.0882 30.0 300 0.1612 0.9615 0.9612 0.9613 0.9615
0.0606 40.0 400 0.1380 0.9679 0.9678 0.9678 0.9679

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2

image/png image/png image/png image/png image/png image/png