hiera-finetuned-stroke-multi-ultrasound-combined

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3436
  • Accuracy: 0.8661
  • F1: 0.8650
  • Precision: 0.8650
  • Recall: 0.8661

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5712 1.7964 100 0.4956 0.7923 0.7933 0.7973 0.7923
0.4495 3.5792 200 0.4193 0.8309 0.8315 0.8325 0.8309
0.4266 5.3620 300 0.4364 0.8150 0.8091 0.8221 0.8150
0.3375 7.1448 400 0.3775 0.8513 0.8473 0.8535 0.8513
0.2979 8.9412 500 0.3360 0.8627 0.8617 0.8614 0.8627
0.2703 10.7240 600 0.3436 0.8661 0.8650 0.8650 0.8661

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
16
Safetensors
Model size
50.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support