levit_128.fb_dist_in1k-finetuned-stroke-binary

This model is a fine-tuned version of timm/levit_128.fb_dist_in1k on an binary stroke detection dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.8598
  • F1: 0.8577
  • Precision: 0.8602
  • Recall: 0.8598

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 36
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7002 0.6202 100 nan 0.5690 0.5387 0.5349 0.5690
0.681 1.2357 200 nan 0.5834 0.5331 0.5372 0.5834
0.6874 1.8558 300 nan 0.6002 0.5596 0.5665 0.6002
0.6774 2.4713 400 nan 0.6124 0.5811 0.5867 0.6124
0.6533 3.0868 500 nan 0.6852 0.6694 0.6767 0.6852
0.6368 3.7070 600 nan 0.7205 0.7153 0.7153 0.7205
0.6196 4.3225 700 nan 0.7603 0.7471 0.7650 0.7603
0.5663 4.9426 800 nan 0.7883 0.7843 0.7864 0.7883
0.5196 5.5581 900 nan 0.8078 0.7972 0.8206 0.8078
0.4704 6.1736 1000 nan 0.8363 0.8317 0.8396 0.8363
0.4715 6.7938 1100 nan 0.8349 0.8292 0.8409 0.8349
0.452 7.4093 1200 nan 0.8503 0.8479 0.8505 0.8503
0.4538 8.0248 1300 nan 0.8598 0.8577 0.8602 0.8598

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
8.49M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BTX24/levit_128.fb_dist_in1k-finetuned-stroke-binary

Finetuned
(1)
this model

Dataset used to train BTX24/levit_128.fb_dist_in1k-finetuned-stroke-binary