This is the Huggingface version of Yi-VL-34B model.
You may use this model for fine-tuning in downstream tasks, we recommend using our efficient fine-tuning toolkit. https://github.com/hiyouga/LLaMA-Factory
- Developed by: 01-AI.
- Language(s) (NLP): Chinese/English
- License: Yi Series Model License
Usage:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq, LlavaConfig
import transformers
from torch import nn
class LlavaMultiModalProjectorYiVL(nn.Module):
def __init__(self, config: "LlavaConfig"):
super().__init__()
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_2 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.linear_3 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_4 = nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.act = nn.GELU()
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_3(hidden_states)
hidden_states = self.linear_4(hidden_states)
return hidden_states
# Monkey patch of LlavaMultiModalProjector is mandatory
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjectorYiVL
model_id = "BUAADreamer/Yi-VL-34B-hf"
messages = [
{ "role": "user", "content": "<image>What's in the picture?" }
]
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = AutoModelForVision2Seq.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
text = [processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)]
images = [Image.open(requests.get(image_file, stream=True).raw)]
inputs = processor(text=text, images=images, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200)
output = processor.batch_decode(output, skip_special_tokens=True)
print(output.split("Assistant:")[-1].strip())
You could also alternatively launch a Web demo by using the CLI command in LLaMA-Factory
llamafactory-cli webchat \
--model_name_or_path BUAADreamer/Yi-VL-34B-hf \
--template yi_vl \
--visual_inputs
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.