Whisper base AR - BA

This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0847
  • Wer: 0.1936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1291 0.5858 1000 0.0912 0.1978
1.7057 1.1716 2000 0.0912 0.2003
1.7162 1.7575 3000 0.0912 0.2060
1.4996 2.3433 4000 0.0901 0.2047
1.3942 2.9291 5000 0.0883 0.1951
1.2285 3.5149 6000 0.0876 0.1957
1.0637 4.1008 7000 0.0873 0.1920
1.1144 4.6866 8000 0.0865 0.1927
1.0164 5.2724 9000 0.0858 0.1923
0.9812 5.8582 10000 0.0856 0.1941
0.8927 6.4441 11000 0.0849 0.2017
0.8936 7.0299 12000 0.0844 0.1961
0.8718 7.6157 13000 0.0854 0.1979
0.9019 8.2015 14000 0.0847 0.1854
0.8293 8.7873 15000 0.0847 0.1983
0.8363 9.3732 16000 0.0842 0.1982
0.8034 9.9590 17000 0.0840 0.1975
0.8462 10.5448 18000 0.0855 0.1953
0.8824 11.1306 19000 0.0848 0.1930
0.8591 11.7165 20000 0.0849 0.1838
0.8339 12.3023 21000 0.0842 0.1863
0.8573 12.8881 22000 0.0836 0.1926
0.7445 13.4739 23000 0.0839 0.1842
0.783 14.0598 24000 0.0836 0.1842
0.7263 14.6456 25000 0.0839 0.1824
0.7634 15.2314 26000 0.0835 0.1826
0.7379 15.8172 27000 0.0834 0.1829
0.7902 16.4030 28000 0.0842 0.1811
0.8261 16.9889 29000 0.0841 0.1849
0.7531 17.5747 30000 0.0840 0.1867
0.7166 18.1605 31000 0.0839 0.1905
0.7976 18.7463 32000 0.0841 0.1838
0.7008 19.3322 33000 0.0835 0.1864
0.707 19.9180 34000 0.0833 0.1872
0.6865 20.5038 35000 0.0835 0.1844
0.6927 21.0896 36000 0.0834 0.1882
0.7014 21.6755 37000 0.0835 0.1861
0.6951 22.2613 38000 0.0833 0.1874
0.6848 22.8471 39000 0.0834 0.1927
0.7096 23.4329 40000 0.0834 0.1936
0.6952 24.0187 41000 0.0835 0.1933
0.692 24.6046 42000 0.0833 0.1930
0.6552 25.1904 43000 0.0831 0.1867
0.6641 25.7762 44000 0.0832 0.1874
0.6921 26.3620 45000 0.0833 0.1880
0.6894 26.9479 46000 0.0832 0.1855
0.7041 27.5337 47000 0.0827 0.1855
0.6452 28.1195 48000 0.0830 0.1882
0.6682 28.7053 49000 0.0828 0.1863
0.6357 29.2912 50000 0.0829 0.1877
0.6645 29.8770 51000 0.0831 0.1898

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
59
Safetensors
Model size
55.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Baselhany/Distilation_Whisper_base_CKP

Finetuned
(508)
this model