Whisper base AR - BA
This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text dataset. It achieves the following results on the evaluation set:
- Loss: 0.0847
- Wer: 0.1936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.1291 | 0.5858 | 1000 | 0.0912 | 0.1978 |
1.7057 | 1.1716 | 2000 | 0.0912 | 0.2003 |
1.7162 | 1.7575 | 3000 | 0.0912 | 0.2060 |
1.4996 | 2.3433 | 4000 | 0.0901 | 0.2047 |
1.3942 | 2.9291 | 5000 | 0.0883 | 0.1951 |
1.2285 | 3.5149 | 6000 | 0.0876 | 0.1957 |
1.0637 | 4.1008 | 7000 | 0.0873 | 0.1920 |
1.1144 | 4.6866 | 8000 | 0.0865 | 0.1927 |
1.0164 | 5.2724 | 9000 | 0.0858 | 0.1923 |
0.9812 | 5.8582 | 10000 | 0.0856 | 0.1941 |
0.8927 | 6.4441 | 11000 | 0.0849 | 0.2017 |
0.8936 | 7.0299 | 12000 | 0.0844 | 0.1961 |
0.8718 | 7.6157 | 13000 | 0.0854 | 0.1979 |
0.9019 | 8.2015 | 14000 | 0.0847 | 0.1854 |
0.8293 | 8.7873 | 15000 | 0.0847 | 0.1983 |
0.8363 | 9.3732 | 16000 | 0.0842 | 0.1982 |
0.8034 | 9.9590 | 17000 | 0.0840 | 0.1975 |
0.8462 | 10.5448 | 18000 | 0.0855 | 0.1953 |
0.8824 | 11.1306 | 19000 | 0.0848 | 0.1930 |
0.8591 | 11.7165 | 20000 | 0.0849 | 0.1838 |
0.8339 | 12.3023 | 21000 | 0.0842 | 0.1863 |
0.8573 | 12.8881 | 22000 | 0.0836 | 0.1926 |
0.7445 | 13.4739 | 23000 | 0.0839 | 0.1842 |
0.783 | 14.0598 | 24000 | 0.0836 | 0.1842 |
0.7263 | 14.6456 | 25000 | 0.0839 | 0.1824 |
0.7634 | 15.2314 | 26000 | 0.0835 | 0.1826 |
0.7379 | 15.8172 | 27000 | 0.0834 | 0.1829 |
0.7902 | 16.4030 | 28000 | 0.0842 | 0.1811 |
0.8261 | 16.9889 | 29000 | 0.0841 | 0.1849 |
0.7531 | 17.5747 | 30000 | 0.0840 | 0.1867 |
0.7166 | 18.1605 | 31000 | 0.0839 | 0.1905 |
0.7976 | 18.7463 | 32000 | 0.0841 | 0.1838 |
0.7008 | 19.3322 | 33000 | 0.0835 | 0.1864 |
0.707 | 19.9180 | 34000 | 0.0833 | 0.1872 |
0.6865 | 20.5038 | 35000 | 0.0835 | 0.1844 |
0.6927 | 21.0896 | 36000 | 0.0834 | 0.1882 |
0.7014 | 21.6755 | 37000 | 0.0835 | 0.1861 |
0.6951 | 22.2613 | 38000 | 0.0833 | 0.1874 |
0.6848 | 22.8471 | 39000 | 0.0834 | 0.1927 |
0.7096 | 23.4329 | 40000 | 0.0834 | 0.1936 |
0.6952 | 24.0187 | 41000 | 0.0835 | 0.1933 |
0.692 | 24.6046 | 42000 | 0.0833 | 0.1930 |
0.6552 | 25.1904 | 43000 | 0.0831 | 0.1867 |
0.6641 | 25.7762 | 44000 | 0.0832 | 0.1874 |
0.6921 | 26.3620 | 45000 | 0.0833 | 0.1880 |
0.6894 | 26.9479 | 46000 | 0.0832 | 0.1855 |
0.7041 | 27.5337 | 47000 | 0.0827 | 0.1855 |
0.6452 | 28.1195 | 48000 | 0.0830 | 0.1882 |
0.6682 | 28.7053 | 49000 | 0.0828 | 0.1863 |
0.6357 | 29.2912 | 50000 | 0.0829 | 0.1877 |
0.6645 | 29.8770 | 51000 | 0.0831 | 0.1898 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 59
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Baselhany/Distilation_Whisper_base_CKP
Base model
openai/whisper-base