cool-darkness-225 / README.md
BeckerAnas's picture
Model save
1cc2809 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: cool-darkness-225
    results: []

cool-darkness-225

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0830
  • Accuracy: 0.9783
  • Precision: 0.9787
  • Recall: 0.9783
  • F1: 0.9783
  • Roc Auc: 0.9995

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
1.7349 1.0 161 0.7668 0.8664 0.8687 0.8664 0.8658 0.9880
0.6429 2.0 322 0.2021 0.9498 0.9506 0.9498 0.9498 0.9979
0.4363 3.0 483 0.1325 0.9601 0.9606 0.9601 0.9600 0.9991
0.3774 4.0 644 0.1117 0.966 0.9667 0.966 0.9660 0.9992
0.3413 5.0 805 0.0979 0.9694 0.9697 0.9694 0.9693 0.9994
0.3051 6.0 966 0.0824 0.9748 0.9749 0.9748 0.9748 0.9995
0.2808 7.0 1127 0.0796 0.9742 0.9744 0.9742 0.9742 0.9995
0.2622 8.0 1288 0.0753 0.9764 0.9765 0.9764 0.9765 0.9995
0.2512 9.0 1449 0.0769 0.9748 0.9748 0.9748 0.9747 0.9996
0.2368 10.0 1610 0.0816 0.9777 0.9780 0.9777 0.9777 0.9995
0.2303 11.0 1771 0.0686 0.98 0.9800 0.98 0.9800 0.9996
0.2141 12.0 1932 0.0684 0.9791 0.9792 0.9791 0.9791 0.9996
0.2086 13.0 2093 0.0766 0.9782 0.9787 0.9782 0.9783 0.9996
0.2012 14.0 2254 0.0830 0.9783 0.9787 0.9783 0.9783 0.9995

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cpu
  • Datasets 3.6.0
  • Tokenizers 0.21.0