hardy-bee-220 / README.md
BeckerAnas's picture
Model save
2115e3d verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hardy-bee-220
    results: []

hardy-bee-220

This model is a fine-tuned version of facebook/convnext-tiny-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0965
  • Accuracy: 0.9648
  • Precision: 0.9660
  • Recall: 0.9648
  • F1: 0.9650
  • Roc Auc: 0.9978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
1.3971 1.0 17 1.3628 0.3997 0.4611 0.3997 0.3922 0.6197
1.343 2.0 34 1.2959 0.4206 0.5256 0.4206 0.4184 0.7270
1.218 3.0 51 1.1328 0.5104 0.5209 0.5104 0.5114 0.7725
1.0866 4.0 68 1.0127 0.5482 0.5251 0.5482 0.5135 0.7935
0.979 5.0 85 0.9274 0.5182 0.5688 0.5182 0.5264 0.7989
0.7709 6.0 102 0.8019 0.5508 0.5959 0.5508 0.5541 0.8207
0.6793 7.0 119 0.7300 0.5729 0.6291 0.5729 0.5779 0.8376
0.7004 8.0 136 0.7979 0.5820 0.6178 0.5820 0.5900 0.8433
0.5933 9.0 153 0.7219 0.5456 0.6553 0.5456 0.5559 0.8498
0.5292 10.0 170 0.6114 0.6888 0.7024 0.6888 0.6911 0.8923
0.4391 11.0 187 0.5453 0.6758 0.7536 0.6758 0.6758 0.9062
0.3856 12.0 204 0.5515 0.6810 0.7299 0.6810 0.6793 0.9156
0.3171 13.0 221 0.4486 0.7188 0.7829 0.7188 0.7172 0.9330
0.3035 14.0 238 0.4295 0.7227 0.7859 0.7227 0.7248 0.9364
0.2196 15.0 255 0.3438 0.8229 0.8298 0.8229 0.8243 0.9563
0.1842 16.0 272 0.2979 0.8190 0.8539 0.8190 0.8180 0.9690
0.1423 17.0 289 0.2747 0.8646 0.8638 0.8646 0.8638 0.9717
0.1387 18.0 306 0.3680 0.7904 0.8535 0.7904 0.7934 0.9793
0.1137 19.0 323 0.2358 0.8490 0.8744 0.8490 0.8486 0.9824
0.1013 20.0 340 0.1700 0.9193 0.9191 0.9193 0.9191 0.9894
0.0763 21.0 357 0.1573 0.9193 0.9241 0.9193 0.9199 0.9906
0.0648 22.0 374 0.1423 0.9323 0.9336 0.9323 0.9324 0.9915
0.0433 23.0 391 0.1344 0.9414 0.9413 0.9414 0.9412 0.9933
0.0392 24.0 408 0.1444 0.9427 0.9444 0.9427 0.9423 0.9938
0.0282 25.0 425 0.1134 0.9622 0.9627 0.9622 0.9623 0.9952
0.0249 26.0 442 0.1243 0.9466 0.9500 0.9466 0.9470 0.9953
0.015 27.0 459 0.1377 0.9336 0.9379 0.9336 0.9339 0.9959
0.0175 28.0 476 0.1320 0.9492 0.9497 0.9492 0.9493 0.9954
0.029 29.0 493 0.1202 0.9583 0.9592 0.9583 0.9582 0.9961
0.0138 30.0 510 0.0889 0.9714 0.9714 0.9714 0.9714 0.9976
0.0135 31.0 527 0.1064 0.9622 0.9635 0.9622 0.9624 0.9969
0.0076 32.0 544 0.1238 0.9427 0.9466 0.9427 0.9428 0.9969
0.0098 33.0 561 0.0871 0.9635 0.9643 0.9635 0.9636 0.9974
0.0066 34.0 578 0.1342 0.9518 0.9547 0.9518 0.9522 0.9968
0.0055 35.0 595 0.0965 0.9648 0.9660 0.9648 0.9650 0.9978

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cpu
  • Datasets 3.6.0
  • Tokenizers 0.21.0