|
--- |
|
library_name: transformers |
|
language: |
|
- lg |
|
license: apache-2.0 |
|
base_model: google-bert/bert-base-multilingual-cased |
|
tags: |
|
- named-entity-recognition |
|
- luganda |
|
- african-languages |
|
- pii-detection |
|
- token-classification |
|
- generated_from_trainer |
|
datasets: |
|
- Beijuka/Luganda_Monolingual_PII_dataset |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-bert-v7 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Beijuka/Luganda_Monolingual_PII_dataset |
|
type: Beijuka/Luganda_Monolingual_PII_dataset |
|
args: 'split: train+validation+test' |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8336713995943205 |
|
- name: Recall |
|
type: recall |
|
value: 0.8162859980139027 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8248871048670346 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9459025442866462 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-bert-v7 |
|
|
|
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Luganda_Monolingual_PII_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3195 |
|
- Precision: 0.8337 |
|
- Recall: 0.8163 |
|
- F1: 0.8249 |
|
- Accuracy: 0.9459 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.4382 | 0.5831 | 0.5124 | 0.5455 | 0.8761 | |
|
| 0.4959 | 2.0 | 522 | 0.2885 | 0.7147 | 0.7289 | 0.7217 | 0.9171 | |
|
| 0.4959 | 3.0 | 783 | 0.2778 | 0.7592 | 0.7200 | 0.7390 | 0.9308 | |
|
| 0.1547 | 4.0 | 1044 | 0.2552 | 0.8016 | 0.7865 | 0.7940 | 0.9389 | |
|
| 0.1547 | 5.0 | 1305 | 0.2718 | 0.7908 | 0.7885 | 0.7897 | 0.9389 | |
|
| 0.061 | 6.0 | 1566 | 0.2881 | 0.8360 | 0.7795 | 0.8068 | 0.9426 | |
|
| 0.061 | 7.0 | 1827 | 0.2908 | 0.8008 | 0.8143 | 0.8075 | 0.9446 | |
|
| 0.023 | 8.0 | 2088 | 0.3195 | 0.8337 | 0.8163 | 0.8249 | 0.9459 | |
|
| 0.023 | 9.0 | 2349 | 0.3190 | 0.8208 | 0.8143 | 0.8175 | 0.9476 | |
|
| 0.0088 | 10.0 | 2610 | 0.3318 | 0.8354 | 0.7964 | 0.8155 | 0.9458 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.53.0 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.6.0 |
|
- Tokenizers 0.21.2 |
|
|