bert-base-mti881
This model is a fine-tuned version of bert-base-uncased on the Ben10x/MedMentions-MTI881-NER dataset. It achieves the following results on the evaluation set:
- Loss: 2.2570
- Precision: 0.6302
- Recall: 0.6139
- F1: 0.6219
- Accuracy: 0.8789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15.0
- label_smoothing_factor: 0.3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
2.2999 | 1.0 | 2925 | 2.2862 | 0.5452 | 0.5734 | 0.5589 | 0.8566 |
2.2263 | 2.0 | 5850 | 2.2756 | 0.5523 | 0.6331 | 0.5899 | 0.8603 |
2.1624 | 3.0 | 8775 | 2.2570 | 0.6302 | 0.6139 | 0.6219 | 0.8789 |
2.1192 | 4.0 | 11700 | 2.2698 | 0.6074 | 0.6450 | 0.6256 | 0.8776 |
2.0896 | 5.0 | 14625 | 2.2902 | 0.6129 | 0.6534 | 0.6325 | 0.8791 |
2.0621 | 6.0 | 17550 | 2.2965 | 0.6309 | 0.6430 | 0.6369 | 0.8811 |
2.0442 | 7.0 | 20475 | 2.3061 | 0.6388 | 0.6571 | 0.6478 | 0.8830 |
2.0301 | 8.0 | 23400 | 2.3260 | 0.6279 | 0.6686 | 0.6476 | 0.8818 |
2.0242 | 9.0 | 26325 | 2.3398 | 0.6353 | 0.6641 | 0.6494 | 0.8830 |
2.0173 | 10.0 | 29250 | 2.3391 | 0.6415 | 0.6632 | 0.6522 | 0.8842 |
2.0132 | 11.0 | 32175 | 2.3498 | 0.6341 | 0.6668 | 0.6501 | 0.8833 |
2.0097 | 12.0 | 35100 | 2.3552 | 0.6388 | 0.6628 | 0.6506 | 0.8846 |
2.007 | 13.0 | 38025 | 2.3634 | 0.6372 | 0.6728 | 0.6545 | 0.8839 |
2.0062 | 14.0 | 40950 | 2.3629 | 0.6406 | 0.6723 | 0.6561 | 0.8845 |
2.0041 | 15.0 | 43875 | 2.3650 | 0.6400 | 0.6740 | 0.6566 | 0.8847 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Ben10x/bert-base-mti881
Base model
google-bert/bert-base-uncasedDataset used to train Ben10x/bert-base-mti881
Evaluation results
- Precision on Ben10x/MedMentions-MTI881-NERself-reported0.630
- Recall on Ben10x/MedMentions-MTI881-NERself-reported0.614
- F1 on Ben10x/MedMentions-MTI881-NERself-reported0.622
- Accuracy on Ben10x/MedMentions-MTI881-NERself-reported0.879