gpt-medmentions

This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the Ben10x/MedMentions-MTI881-NER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5111
  • Precision: 0.4453
  • Recall: 0.5247
  • F1: 0.4818
  • Accuracy: 0.8454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5307 1.0 5850 0.5369 0.4129 0.4711 0.4401 0.8341
0.3585 2.0 11700 0.5111 0.4453 0.5247 0.4818 0.8454
0.1758 3.0 17550 0.6349 0.4718 0.4900 0.4807 0.8497
0.0751 4.0 23400 0.9264 0.4628 0.5208 0.4901 0.8497
0.0387 5.0 29250 1.0903 0.4758 0.5181 0.4960 0.8518

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
1.32B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ben10x/gpt-medmentions

Finetuned
(31)
this model

Dataset used to train Ben10x/gpt-medmentions

Evaluation results