wav2vec-bert-2.0-ulch-try

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3563
  • Wer: 0.4872
  • Cer: 0.1704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Cer
4.4139 0.1219 180 1.7147 0.9451 0.4056
1.5054 0.2438 360 1.4105 0.8582 0.3543
1.4072 0.3656 540 1.3314 0.8832 0.3701
1.236 0.4875 720 1.1863 0.7590 0.2799
1.1715 0.6094 900 1.1086 0.7380 0.2837
1.1484 0.7313 1080 1.0823 0.6931 0.2509
1.1007 0.8532 1260 1.0204 0.7211 0.2560
1.0404 0.9750 1440 0.9578 0.7289 0.2511
0.9031 1.0968 1620 0.9397 0.6513 0.2303
0.9951 1.2187 1800 0.9252 0.6504 0.2309
0.842 1.3406 1980 0.9184 0.6139 0.2190
0.8247 1.4625 2160 0.8968 0.6143 0.2208
0.867 1.5843 2340 0.8945 0.6140 0.2192
0.8674 1.7062 2520 0.8362 0.6092 0.2097
0.818 1.8281 2700 0.8848 0.6116 0.2130
0.7734 1.9500 2880 0.8408 0.5740 0.2002
0.7266 2.0718 3060 0.8358 0.5806 0.2041
0.6954 2.1937 3240 0.8125 0.5705 0.1985
0.6441 2.3155 3420 0.8175 0.5714 0.1985
0.6673 2.4374 3600 0.8032 0.5637 0.1974
0.6947 2.5593 3780 0.8041 0.5884 0.2165
0.6856 2.6812 3960 0.7781 0.5513 0.1952
0.6401 2.8030 4140 0.7975 0.5548 0.1935
0.6342 2.9249 4320 0.7842 0.5377 0.1899
0.6434 3.0467 4500 0.7777 0.5395 0.1874
0.5545 3.1686 4680 0.7825 0.5479 0.1941
0.5798 3.2905 4860 0.7889 0.5335 0.1866
0.5142 3.4124 5040 0.7797 0.5371 0.1918
0.5413 3.5342 5220 0.7797 0.5461 0.1891
0.5282 3.6561 5400 0.7814 0.5357 0.1868
0.5308 3.7780 5580 0.7649 0.5202 0.1802
0.4949 3.8999 5760 0.7638 0.5458 0.1856
0.4853 4.0217 5940 0.7786 0.5247 0.1803
0.4026 4.1435 6120 0.7678 0.5277 0.1857
0.428 4.2654 6300 0.7772 0.5217 0.1795
0.394 4.3873 6480 0.7642 0.5118 0.1779
0.418 4.5092 6660 0.7672 0.5219 0.1809
0.4245 4.6311 6840 0.7464 0.5113 0.1811
0.4657 4.7529 7020 0.7470 0.5211 0.1859
0.4285 4.8748 7200 0.7455 0.5269 0.1858
0.416 4.9967 7380 0.7357 0.5325 0.1860
0.3282 5.1185 7560 0.8268 0.5086 0.1791
0.3192 5.2404 7740 0.8087 0.5088 0.1781
0.3262 5.3623 7920 0.7779 0.5161 0.1836
0.3152 5.4841 8100 0.8079 0.5064 0.1766
0.3622 5.6060 8280 0.8168 0.5062 0.1789
0.318 5.7279 8460 0.8088 0.4976 0.1744
0.3107 5.8498 8640 0.8074 0.5020 0.1792
0.3017 5.9716 8820 0.7807 0.5068 0.1759
0.2594 6.0934 9000 0.9053 0.5003 0.1740
0.2994 6.2153 9180 0.8920 0.5022 0.1746
0.2288 6.3372 9360 0.9006 0.4981 0.1773
0.2345 6.4591 9540 0.8932 0.4963 0.1761
0.2287 6.5810 9720 0.8502 0.4961 0.1734
0.2291 6.7028 9900 0.8334 0.5010 0.1787
0.2075 6.8247 10080 0.8773 0.4869 0.1726
0.2182 6.9466 10260 0.8423 0.4964 0.1754
0.1815 7.0684 10440 0.9376 0.4936 0.1733
0.1586 7.1903 10620 0.9601 0.5016 0.1751
0.1578 7.3121 10800 0.9650 0.4894 0.1726
0.1489 7.4340 10980 0.9943 0.4852 0.1700
0.153 7.5559 11160 1.0456 0.4832 0.1686
0.1501 7.6778 11340 1.0008 0.4857 0.1714
0.1397 7.7997 11520 0.9729 0.4878 0.1740
0.1554 7.9215 11700 0.9443 0.4826 0.1710
0.1732 8.0433 11880 1.0668 0.4854 0.1707
0.0863 8.1652 12060 1.1487 0.4849 0.1708
0.0886 8.2871 12240 1.1944 0.4866 0.1714
0.0986 8.4090 12420 1.1378 0.4818 0.1691
0.137 8.5309 12600 1.1633 0.4923 0.1716
0.0954 8.6527 12780 1.1348 0.4910 0.1713
0.101 8.7746 12960 1.0933 0.4883 0.1715
0.0833 8.8965 13140 1.1138 0.4951 0.1721
0.1005 9.0183 13320 1.1980 0.4866 0.1699
0.0476 9.1402 13500 1.3154 0.4908 0.1721
0.0529 9.2620 13680 1.3140 0.4874 0.1720
0.0532 9.3839 13860 1.3547 0.4873 0.1711
0.0499 9.5058 14040 1.3280 0.4850 0.1704
0.0538 9.6277 14220 1.3608 0.4858 0.1705
0.0529 9.7496 14400 1.3606 0.4838 0.1704
0.0504 9.8714 14580 1.3553 0.4876 0.1706
0.0411 9.9933 14760 1.3563 0.4872 0.1704

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
46
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Ber5h/wav2vec-bert-2.0-ulch-try

Finetuned
(360)
this model

Evaluation results