metadata
library_name: peft
license: other
base_model: facebook/opt-350m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 32c9118c-9ab2-462a-986b-cb14498ab6d6
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: facebook/opt-350m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f09a068a17c73549_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f09a068a17c73549_train_data.json
type:
field_instruction: prompt
field_output: gold_standard_solution
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 300
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: Best000/32c9118c-9ab2-462a-986b-cb14498ab6d6
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 17996
micro_batch_size: 4
mlflow_experiment_name: /tmp/f09a068a17c73549_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 300
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: fb6671a1-3169-4044-b339-5b07d92c1691
wandb_project: SN56-15
wandb_run: your_name
wandb_runid: fb6671a1-3169-4044-b339-5b07d92c1691
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
32c9118c-9ab2-462a-986b-cb14498ab6d6
This model is a fine-tuned version of facebook/opt-350m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.9687
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 50
- training_steps: 17996
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 5.0216 |
11.4064 | 0.0847 | 300 | 4.2782 |
11.3498 | 0.1695 | 600 | 4.2733 |
10.8428 | 0.2542 | 900 | 3.5935 |
10.9353 | 0.3390 | 1200 | 3.9772 |
11.1807 | 0.4237 | 1500 | 3.5348 |
11.3266 | 0.5085 | 1800 | 3.3175 |
10.7106 | 0.5932 | 2100 | 3.5059 |
10.5636 | 0.6780 | 2400 | 3.9275 |
10.635 | 0.7627 | 2700 | 4.9687 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1