SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The majority of these nations are now republics or part of republics.\n',
'एतेषु अधिकांशाः देशाः अधुना गणराज्यानि उत गणराज्यानां भागाः वा सन्ति।\n',
'अत्र मूलसञ्चिका (source file) विद्यते। pdflatex इत्यादेशमुपयुज्य सङ्कलयामि।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8049, 0.1296],
# [0.8049, 1.0000, 0.1642],
# [0.1296, 0.1642, 1.0000]])
Evaluation
Metrics
Translation
- Dataset:
eval-en-sa
- Evaluated with
TranslationEvaluator
Metric | Value |
---|---|
src2trg_accuracy | 0.866 |
trg2src_accuracy | 0.868 |
mean_accuracy | 0.867 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 257,886 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 5 tokens
- mean: 33.91 tokens
- max: 403 tokens
- min: 6 tokens
- mean: 37.33 tokens
- max: 228 tokens
- Samples:
sentence_0 sentence_1 "For the purpose of this tutorial, we shall list these instructions in slides."
अस्य पाठस्य आनुकूल्याय स्लैड् द्वारा आदेशान् वदामः ।
Gandharva prajapati, Vishwakarma and mana swaroop. Please protect Gandharva Brahmins and Kshatriyas. Riku and Sama have an apsara named Ashti. Please protect us. This sacrifice is an offering for them. Swaha for them. (43)
प्र॒जाप॑तिर्वि॒श्वक॑र्मा॒ मनो॑ गन्ध॒र्वस्तस्य॑ऽऋ॒क्सा॒मान्य॑प्स॒रस॒ऽएष्ट॑यो॒ नाम॑। स न॑ऽइ॒दं ब्रह्म॑ क्ष॒त्रं पा॑तु॒ तस्मै॒ स्वाहा॒ वाट् ताभ्यः॒ स्वाहा॑ ॥ (४३)
Many things are sold to treat acne, the most popular being benzoyl peroxide.
आक्ने-चिकित्सार्थं नाइकानि वस्तूनि विक्रीयन्ते, तेषु अतिजनप्रियं बेन्ज़ोय्ल् पराक्सैड्।
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4num_train_epochs
: 15multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
---|---|---|---|
0.0078 | 500 | 0.2715 | - |
0.0155 | 1000 | 0.0402 | - |
0.0233 | 1500 | 0.0323 | - |
0.0310 | 2000 | 0.0305 | - |
0.0388 | 2500 | 0.0169 | - |
0.0465 | 3000 | 0.0122 | - |
0.0543 | 3500 | 0.011 | - |
0.0620 | 4000 | 0.0134 | - |
0.0698 | 4500 | 0.0081 | - |
0.0776 | 5000 | 0.0177 | - |
0.0853 | 5500 | 0.0195 | - |
0.0931 | 6000 | 0.014 | - |
0.1008 | 6500 | 0.0226 | - |
0.1086 | 7000 | 0.0122 | - |
0.1163 | 7500 | 0.0156 | - |
0.1241 | 8000 | 0.0192 | - |
0.1318 | 8500 | 0.023 | - |
0.1396 | 9000 | 0.0153 | - |
0.1474 | 9500 | 0.0275 | - |
0.1551 | 10000 | 0.0272 | - |
0.1629 | 10500 | 0.0222 | - |
0.1706 | 11000 | 0.0134 | - |
0.1784 | 11500 | 0.0216 | - |
0.1861 | 12000 | 0.0152 | - |
0.1939 | 12500 | 0.0104 | - |
0.2016 | 13000 | 0.0178 | - |
0.2094 | 13500 | 0.0209 | - |
0.2171 | 14000 | 0.0211 | - |
0.2249 | 14500 | 0.0198 | - |
0.2327 | 15000 | 0.0212 | - |
0.2404 | 15500 | 0.0177 | - |
0.2482 | 16000 | 0.0221 | - |
0.2559 | 16500 | 0.0206 | - |
0.2637 | 17000 | 0.0181 | - |
0.2714 | 17500 | 0.0165 | - |
0.2792 | 18000 | 0.0145 | - |
0.2869 | 18500 | 0.0139 | - |
0.2947 | 19000 | 0.0198 | - |
0.3025 | 19500 | 0.0139 | - |
0.3102 | 20000 | 0.0177 | - |
0.3180 | 20500 | 0.0104 | - |
0.3257 | 21000 | 0.0149 | - |
0.3335 | 21500 | 0.0144 | - |
0.3412 | 22000 | 0.0168 | - |
0.3490 | 22500 | 0.0156 | - |
0.3567 | 23000 | 0.0132 | - |
0.3645 | 23500 | 0.0152 | - |
0.3723 | 24000 | 0.0147 | - |
0.3800 | 24500 | 0.0142 | - |
0.3878 | 25000 | 0.018 | - |
0.3955 | 25500 | 0.0246 | - |
0.4033 | 26000 | 0.0105 | - |
0.4110 | 26500 | 0.0097 | - |
0.4188 | 27000 | 0.0145 | - |
0.4265 | 27500 | 0.0136 | - |
0.4343 | 28000 | 0.0182 | - |
0.4421 | 28500 | 0.016 | - |
0.4498 | 29000 | 0.0088 | - |
0.4576 | 29500 | 0.0106 | - |
0.4653 | 30000 | 0.02 | - |
0.4731 | 30500 | 0.0153 | - |
0.4808 | 31000 | 0.0118 | - |
0.4886 | 31500 | 0.0141 | - |
0.4963 | 32000 | 0.0194 | - |
0.5041 | 32500 | 0.0149 | - |
0.5119 | 33000 | 0.0099 | - |
0.5196 | 33500 | 0.0212 | - |
0.5274 | 34000 | 0.0112 | - |
0.5351 | 34500 | 0.0175 | - |
0.5429 | 35000 | 0.0149 | - |
0.5506 | 35500 | 0.0142 | - |
0.5584 | 36000 | 0.0174 | - |
0.5661 | 36500 | 0.0146 | - |
0.5739 | 37000 | 0.0186 | - |
0.5816 | 37500 | 0.0167 | - |
0.5894 | 38000 | 0.0356 | - |
0.5972 | 38500 | 0.0195 | - |
0.6049 | 39000 | 0.0165 | - |
0.6127 | 39500 | 0.0202 | - |
0.6204 | 40000 | 0.0142 | - |
0.6282 | 40500 | 0.0104 | - |
0.6359 | 41000 | 0.0104 | - |
0.6437 | 41500 | 0.0155 | - |
0.6514 | 42000 | 0.0056 | - |
0.6592 | 42500 | 0.0102 | - |
0.6670 | 43000 | 0.0096 | - |
0.6747 | 43500 | 0.0219 | - |
0.6825 | 44000 | 0.0106 | - |
0.6902 | 44500 | 0.0129 | - |
0.6980 | 45000 | 0.0152 | - |
0.7057 | 45500 | 0.0158 | - |
0.7135 | 46000 | 0.0082 | - |
0.7212 | 46500 | 0.0159 | - |
0.7290 | 47000 | 0.0184 | - |
0.7368 | 47500 | 0.0101 | - |
0.7445 | 48000 | 0.0101 | - |
0.7523 | 48500 | 0.0115 | - |
0.7600 | 49000 | 0.0111 | - |
0.7678 | 49500 | 0.0116 | - |
0.7755 | 50000 | 0.0085 | 0.867 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.10.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 15
Model tree for Bheri/e5large-en-sa-v1
Evaluation results
- Src2Trg Accuracy on eval en saself-reported0.866
- Trg2Src Accuracy on eval en saself-reported0.868
- Mean Accuracy on eval en saself-reported0.867