SentenceTransformer based on sentence-transformers/LaBSE

This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/LaBSE
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
    'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
    'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Translation

Metric Value
src2trg_accuracy 0.944
trg2src_accuracy 0.947
mean_accuracy 0.9455

Training Details

Training Dataset

Unnamed Dataset

  • Size: 257,886 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 6 tokens
    • mean: 31.6 tokens
    • max: 128 tokens
    • min: 7 tokens
    • mean: 40.18 tokens
    • max: 128 tokens
  • Samples:
    sentence_0 sentence_1
    It normally connects to port 80 on a computer.
    इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।
    He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners. सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।
    By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.
    १६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • num_train_epochs: 15
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 15
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss eval-en-sa_mean_accuracy
0.0310 500 0.4289 -
0.0620 1000 0.182 -
0.0931 1500 0.1405 -
0.1241 2000 0.1097 -
0.1551 2500 0.0911 -
0.1861 3000 0.0791 -
0.2171 3500 0.0725 -
0.2482 4000 0.067 -
0.2792 4500 0.0594 -
0.3102 5000 0.0629 -
0.3412 5500 0.0535 -
0.3723 6000 0.0512 -
0.4033 6500 0.0456 -
0.4343 7000 0.0462 -
0.4653 7500 0.043 -
0.4963 8000 0.0425 -
0.5274 8500 0.0412 -
0.5584 9000 0.0418 -
0.5894 9500 0.0415 -
0.6204 10000 0.0409 -
0.6514 10500 0.04 -
0.6825 11000 0.032 -
0.7135 11500 0.0323 -
0.7445 12000 0.0325 -
0.7755 12500 0.0355 -
0.8066 13000 0.0285 -
0.8376 13500 0.0281 -
0.8686 14000 0.0289 -
0.8996 14500 0.033 -
0.9306 15000 0.0336 -
0.9617 15500 0.0335 -
0.9927 16000 0.0278 -
1.0 16118 - 0.913
1.0237 16500 0.0312 -
1.0547 17000 0.0294 -
1.0857 17500 0.0288 -
1.1168 18000 0.0287 -
1.1478 18500 0.0245 -
1.1788 19000 0.0243 -
1.2098 19500 0.022 -
1.2408 20000 0.0266 -
1.2719 20500 0.0224 -
1.3029 21000 0.0283 -
1.3339 21500 0.02 -
1.3649 22000 0.0212 -
1.3960 22500 0.0197 -
1.4270 23000 0.0174 -
1.4580 23500 0.0179 -
1.4890 24000 0.0187 -
1.5200 24500 0.0191 -
1.5511 25000 0.0151 -
1.5821 25500 0.0161 -
1.6131 26000 0.0182 -
1.6441 26500 0.0155 -
1.6751 27000 0.013 -
1.7062 27500 0.0119 -
1.7372 28000 0.0119 -
1.7682 28500 0.0133 -
1.7992 29000 0.0113 -
1.8303 29500 0.011 -
1.8613 30000 0.0133 -
1.8923 30500 0.0114 -
1.9233 31000 0.0139 -
1.9543 31500 0.0131 -
1.9854 32000 0.0115 -
2.0 32236 - 0.9345
2.0164 32500 0.01 -
2.0474 33000 0.01 -
2.0784 33500 0.0091 -
2.1094 34000 0.0131 -
2.1405 34500 0.0096 -
2.1715 35000 0.0095 -
2.2025 35500 0.0103 -
2.2335 36000 0.0101 -
2.2645 36500 0.0102 -
2.2956 37000 0.0102 -
2.3266 37500 0.0085 -
2.3576 38000 0.0087 -
2.3886 38500 0.0103 -
2.4197 39000 0.0058 -
2.4507 39500 0.0086 -
2.4817 40000 0.0088 -
2.5127 40500 0.0088 -
2.5437 41000 0.007 -
2.5748 41500 0.0082 -
2.6058 42000 0.0069 -
2.6368 42500 0.0071 -
2.6678 43000 0.0058 -
2.6988 43500 0.0075 -
2.7299 44000 0.0064 -
2.7609 44500 0.0053 -
2.7919 45000 0.0055 -
2.8229 45500 0.0061 -
2.8540 46000 0.0059 -
2.8850 46500 0.0062 -
2.9160 47000 0.0046 -
2.9470 47500 0.0064 -
2.9780 48000 0.0053 -
3.0 48354 - 0.941
3.0091 48500 0.0048 -
3.0401 49000 0.0059 -
3.0711 49500 0.005 -
3.1021 50000 0.005 0.9415
3.1331 50500 0.0046 -
3.1642 51000 0.005 -
3.1952 51500 0.0051 -
3.2262 52000 0.0041 -
3.2572 52500 0.0052 -
3.2882 53000 0.0052 -
3.3193 53500 0.0053 -
3.3503 54000 0.0041 -
3.3813 54500 0.0042 -
3.4123 55000 0.0026 -
3.4434 55500 0.0045 -
3.4744 56000 0.0045 -
3.5054 56500 0.0054 -
3.5364 57000 0.0055 -
3.5674 57500 0.0046 -
3.5985 58000 0.0045 -
3.6295 58500 0.0041 -
3.6605 59000 0.0037 -
3.6915 59500 0.003 -
3.7225 60000 0.0039 -
3.7536 60500 0.0027 -
3.7846 61000 0.0041 -
3.8156 61500 0.003 -
3.8466 62000 0.0027 -
3.8777 62500 0.0039 -
3.9087 63000 0.0038 -
3.9397 63500 0.0029 -
3.9707 64000 0.0037 -
4.0 64472 - 0.9365
4.0017 64500 0.0023 -
4.0328 65000 0.0034 -
4.0638 65500 0.0033 -
4.0948 66000 0.0033 -
4.1258 66500 0.004 -
4.1568 67000 0.0026 -
4.1879 67500 0.0026 -
4.2189 68000 0.0025 -
4.2499 68500 0.0037 -
4.2809 69000 0.0041 -
4.3119 69500 0.0031 -
4.3430 70000 0.0025 -
4.3740 70500 0.0025 -
4.4050 71000 0.0022 -
4.4360 71500 0.0016 -
4.4671 72000 0.003 -
4.4981 72500 0.0029 -
4.5291 73000 0.003 -
4.5601 73500 0.0025 -
4.5911 74000 0.0027 -
4.6222 74500 0.0028 -
4.6532 75000 0.003 -
4.6842 75500 0.002 -
4.7152 76000 0.0028 -
4.7462 76500 0.0016 -
4.7773 77000 0.0022 -
4.8083 77500 0.0019 -
4.8393 78000 0.0019 -
4.8703 78500 0.0026 -
4.9014 79000 0.0023 -
4.9324 79500 0.0016 -
4.9634 80000 0.0019 -
4.9944 80500 0.0018 -
5.0 80590 - 0.937
5.0254 81000 0.0028 -
5.0565 81500 0.0019 -
5.0875 82000 0.0024 -
5.1185 82500 0.0016 -
5.1495 83000 0.0015 -
5.1805 83500 0.0017 -
5.2116 84000 0.0016 -
5.2426 84500 0.0026 -
5.2736 85000 0.0029 -
5.3046 85500 0.0027 -
5.3356 86000 0.002 -
5.3667 86500 0.002 -
5.3977 87000 0.0021 -
5.4287 87500 0.0011 -
5.4597 88000 0.0016 -
5.4908 88500 0.0019 -
5.5218 89000 0.0027 -
5.5528 89500 0.0012 -
5.5838 90000 0.0012 -
5.6148 90500 0.0016 -
5.6459 91000 0.0019 -
5.6769 91500 0.0016 -
5.7079 92000 0.0027 -
5.7389 92500 0.0013 -
5.7699 93000 0.0013 -
5.8010 93500 0.0015 -
5.8320 94000 0.0016 -
5.8630 94500 0.002 -
5.8940 95000 0.001 -
5.9251 95500 0.0014 -
5.9561 96000 0.0021 -
5.9871 96500 0.0022 -
6.0 96708 - 0.933
6.0181 97000 0.0016 -
6.0491 97500 0.0015 -
6.0802 98000 0.0011 -
6.1112 98500 0.0016 -
6.1422 99000 0.001 -
6.1732 99500 0.0013 -
6.2042 100000 0.0015 0.9365
6.2353 100500 0.0017 -
6.2663 101000 0.0015 -
6.2973 101500 0.0016 -
6.3283 102000 0.001 -
6.3593 102500 0.0013 -
6.3904 103000 0.0013 -
6.4214 103500 0.0011 -
6.4524 104000 0.0007 -
6.4834 104500 0.0013 -
6.5145 105000 0.0011 -
6.5455 105500 0.0011 -
6.5765 106000 0.0015 -
6.6075 106500 0.002 -
6.6385 107000 0.0011 -
6.6696 107500 0.0013 -
6.7006 108000 0.0017 -
6.7316 108500 0.0008 -
6.7626 109000 0.0011 -
6.7936 109500 0.0008 -
6.8247 110000 0.0009 -
6.8557 110500 0.0014 -
6.8867 111000 0.0014 -
6.9177 111500 0.0014 -
6.9488 112000 0.0014 -
6.9798 112500 0.0013 -
7.0 112826 - 0.9390
7.0108 113000 0.0011 -
7.0418 113500 0.0013 -
7.0728 114000 0.0012 -
7.1039 114500 0.001 -
7.1349 115000 0.0016 -
7.1659 115500 0.0009 -
7.1969 116000 0.0009 -
7.2279 116500 0.0007 -
7.2590 117000 0.0008 -
7.2900 117500 0.0014 -
7.3210 118000 0.0012 -
7.3520 118500 0.0007 -
7.3831 119000 0.001 -
7.4141 119500 0.001 -
7.4451 120000 0.0007 -
7.4761 120500 0.0008 -
7.5071 121000 0.0009 -
7.5382 121500 0.0009 -
7.5692 122000 0.001 -
7.6002 122500 0.0009 -
7.6312 123000 0.0007 -
7.6622 123500 0.0009 -
7.6933 124000 0.0007 -
7.7243 124500 0.0012 -
7.7553 125000 0.001 -
7.7863 125500 0.0005 -
7.8173 126000 0.0005 -
7.8484 126500 0.0008 -
7.8794 127000 0.0014 -
7.9104 127500 0.0014 -
7.9414 128000 0.0009 -
7.9725 128500 0.0008 -
8.0 128944 - 0.94
8.0035 129000 0.0013 -
8.0345 129500 0.0007 -
8.0655 130000 0.0007 -
8.0965 130500 0.0008 -
8.1276 131000 0.0009 -
8.1586 131500 0.0009 -
8.1896 132000 0.0007 -
8.2206 132500 0.0008 -
8.2516 133000 0.0008 -
8.2827 133500 0.0006 -
8.3137 134000 0.0008 -
8.3447 134500 0.001 -
8.3757 135000 0.0006 -
8.4068 135500 0.0007 -
8.4378 136000 0.0007 -
8.4688 136500 0.0009 -
8.4998 137000 0.0008 -
8.5308 137500 0.0006 -
8.5619 138000 0.0008 -
8.5929 138500 0.0007 -
8.6239 139000 0.0008 -
8.6549 139500 0.0006 -
8.6859 140000 0.0005 -
8.7170 140500 0.0006 -
8.7480 141000 0.0006 -
8.7790 141500 0.0006 -
8.8100 142000 0.0005 -
8.8410 142500 0.0006 -
8.8721 143000 0.0005 -
8.9031 143500 0.0006 -
8.9341 144000 0.0009 -
8.9651 144500 0.0007 -
8.9962 145000 0.0007 -
9.0 145062 - 0.938
9.0272 145500 0.0007 -
9.0582 146000 0.0007 -
9.0892 146500 0.0007 -
9.1202 147000 0.0007 -
9.1513 147500 0.0005 -
9.1823 148000 0.0005 -
9.2133 148500 0.0005 -
9.2443 149000 0.0007 -
9.2753 149500 0.0006 -
9.3064 150000 0.0005 0.938
9.3374 150500 0.0005 -
9.3684 151000 0.0004 -
9.3994 151500 0.0007 -
9.4305 152000 0.0006 -
9.4615 152500 0.0006 -
9.4925 153000 0.0012 -
9.5235 153500 0.0015 -
9.5545 154000 0.0006 -
9.5856 154500 0.0004 -
9.6166 155000 0.0004 -
9.6476 155500 0.0007 -
9.6786 156000 0.0005 -
9.7096 156500 0.0006 -
9.7407 157000 0.0004 -
9.7717 157500 0.0004 -
9.8027 158000 0.0006 -
9.8337 158500 0.0004 -
9.8647 159000 0.0005 -
9.8958 159500 0.0005 -
9.9268 160000 0.0004 -
9.9578 160500 0.0007 -
9.9888 161000 0.0008 -
10.0 161180 - 0.9405
10.0199 161500 0.0009 -
10.0509 162000 0.0007 -
10.0819 162500 0.0007 -
10.1129 163000 0.0007 -
10.1439 163500 0.0005 -
10.1750 164000 0.0005 -
10.2060 164500 0.0004 -
10.2370 165000 0.0006 -
10.2680 165500 0.0006 -
10.2990 166000 0.0005 -
10.3301 166500 0.0005 -
10.3611 167000 0.0006 -
10.3921 167500 0.0006 -
10.4231 168000 0.0003 -
10.4542 168500 0.0005 -
10.4852 169000 0.001 -
10.5162 169500 0.0007 -
10.5472 170000 0.0003 -
10.5782 170500 0.0005 -
10.6093 171000 0.0003 -
10.6403 171500 0.0004 -
10.6713 172000 0.0006 -
10.7023 172500 0.0006 -
10.7333 173000 0.0005 -
10.7644 173500 0.0004 -
10.7954 174000 0.0003 -
10.8264 174500 0.0007 -
10.8574 175000 0.0005 -
10.8884 175500 0.0003 -
10.9195 176000 0.0006 -
10.9505 176500 0.001 -
10.9815 177000 0.0007 -
11.0 177298 - 0.9345
11.0125 177500 0.0003 -
11.0436 178000 0.0003 -
11.0746 178500 0.0005 -
11.1056 179000 0.0005 -
11.1366 179500 0.0007 -
11.1676 180000 0.0008 -
11.1987 180500 0.0004 -
11.2297 181000 0.0006 -
11.2607 181500 0.0006 -
11.2917 182000 0.0009 -
11.3227 182500 0.0005 -
11.3538 183000 0.0004 -
11.3848 183500 0.0004 -
11.4158 184000 0.0005 -
11.4468 184500 0.0003 -
11.4779 185000 0.0002 -
11.5089 185500 0.0003 -
11.5399 186000 0.0007 -
11.5709 186500 0.0003 -
11.6019 187000 0.0003 -
11.6330 187500 0.0004 -
11.6640 188000 0.0007 -
11.6950 188500 0.0003 -
11.7260 189000 0.0003 -
11.7570 189500 0.0004 -
11.7881 190000 0.0004 -
11.8191 190500 0.0003 -
11.8501 191000 0.0003 -
11.8811 191500 0.0003 -
11.9121 192000 0.0002 -
11.9432 192500 0.0008 -
11.9742 193000 0.0004 -
12.0 193416 - 0.944
12.0052 193500 0.0005 -
12.0362 194000 0.0002 -
12.0673 194500 0.0003 -
12.0983 195000 0.0004 -
12.1293 195500 0.0005 -
12.1603 196000 0.0004 -
12.1913 196500 0.0002 -
12.2224 197000 0.0002 -
12.2534 197500 0.0003 -
12.2844 198000 0.0003 -
12.3154 198500 0.0005 -
12.3464 199000 0.0004 -
12.3775 199500 0.0004 -
12.4085 200000 0.0003 0.9435
12.4395 200500 0.0003 -
12.4705 201000 0.0004 -
12.5016 201500 0.0009 -
12.5326 202000 0.0005 -
12.5636 202500 0.0003 -
12.5946 203000 0.0003 -
12.6256 203500 0.0002 -
12.6567 204000 0.0003 -
12.6877 204500 0.0002 -
12.7187 205000 0.0005 -
12.7497 205500 0.0003 -
12.7807 206000 0.0004 -
12.8118 206500 0.0003 -
12.8428 207000 0.0003 -
12.8738 207500 0.0003 -
12.9048 208000 0.0003 -
12.9358 208500 0.0006 -
12.9669 209000 0.0004 -
12.9979 209500 0.0004 -
13.0 209534 - 0.9455

Framework Versions

  • Python: 3.10.17
  • Sentence Transformers: 4.1.0
  • Transformers: 4.46.3
  • PyTorch: 2.2.0+cu121
  • Accelerate: 1.1.1
  • Datasets: 2.18.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
13
Safetensors
Model size
471M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Bheri/labse-en-sa-v1

Finetuned
(71)
this model

Evaluation results