SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Translation
- Dataset:
eval-en-sa
- Evaluated with
TranslationEvaluator
Metric | Value |
---|---|
src2trg_accuracy | 0.944 |
trg2src_accuracy | 0.947 |
mean_accuracy | 0.9455 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 257,886 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 31.6 tokens
- max: 128 tokens
- min: 7 tokens
- mean: 40.18 tokens
- max: 128 tokens
- Samples:
sentence_0 sentence_1 It normally connects to port 80 on a computer.
इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।
He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners.
सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।
By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.
१६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4num_train_epochs
: 15multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 15max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
---|---|---|---|
0.0310 | 500 | 0.4289 | - |
0.0620 | 1000 | 0.182 | - |
0.0931 | 1500 | 0.1405 | - |
0.1241 | 2000 | 0.1097 | - |
0.1551 | 2500 | 0.0911 | - |
0.1861 | 3000 | 0.0791 | - |
0.2171 | 3500 | 0.0725 | - |
0.2482 | 4000 | 0.067 | - |
0.2792 | 4500 | 0.0594 | - |
0.3102 | 5000 | 0.0629 | - |
0.3412 | 5500 | 0.0535 | - |
0.3723 | 6000 | 0.0512 | - |
0.4033 | 6500 | 0.0456 | - |
0.4343 | 7000 | 0.0462 | - |
0.4653 | 7500 | 0.043 | - |
0.4963 | 8000 | 0.0425 | - |
0.5274 | 8500 | 0.0412 | - |
0.5584 | 9000 | 0.0418 | - |
0.5894 | 9500 | 0.0415 | - |
0.6204 | 10000 | 0.0409 | - |
0.6514 | 10500 | 0.04 | - |
0.6825 | 11000 | 0.032 | - |
0.7135 | 11500 | 0.0323 | - |
0.7445 | 12000 | 0.0325 | - |
0.7755 | 12500 | 0.0355 | - |
0.8066 | 13000 | 0.0285 | - |
0.8376 | 13500 | 0.0281 | - |
0.8686 | 14000 | 0.0289 | - |
0.8996 | 14500 | 0.033 | - |
0.9306 | 15000 | 0.0336 | - |
0.9617 | 15500 | 0.0335 | - |
0.9927 | 16000 | 0.0278 | - |
1.0 | 16118 | - | 0.913 |
1.0237 | 16500 | 0.0312 | - |
1.0547 | 17000 | 0.0294 | - |
1.0857 | 17500 | 0.0288 | - |
1.1168 | 18000 | 0.0287 | - |
1.1478 | 18500 | 0.0245 | - |
1.1788 | 19000 | 0.0243 | - |
1.2098 | 19500 | 0.022 | - |
1.2408 | 20000 | 0.0266 | - |
1.2719 | 20500 | 0.0224 | - |
1.3029 | 21000 | 0.0283 | - |
1.3339 | 21500 | 0.02 | - |
1.3649 | 22000 | 0.0212 | - |
1.3960 | 22500 | 0.0197 | - |
1.4270 | 23000 | 0.0174 | - |
1.4580 | 23500 | 0.0179 | - |
1.4890 | 24000 | 0.0187 | - |
1.5200 | 24500 | 0.0191 | - |
1.5511 | 25000 | 0.0151 | - |
1.5821 | 25500 | 0.0161 | - |
1.6131 | 26000 | 0.0182 | - |
1.6441 | 26500 | 0.0155 | - |
1.6751 | 27000 | 0.013 | - |
1.7062 | 27500 | 0.0119 | - |
1.7372 | 28000 | 0.0119 | - |
1.7682 | 28500 | 0.0133 | - |
1.7992 | 29000 | 0.0113 | - |
1.8303 | 29500 | 0.011 | - |
1.8613 | 30000 | 0.0133 | - |
1.8923 | 30500 | 0.0114 | - |
1.9233 | 31000 | 0.0139 | - |
1.9543 | 31500 | 0.0131 | - |
1.9854 | 32000 | 0.0115 | - |
2.0 | 32236 | - | 0.9345 |
2.0164 | 32500 | 0.01 | - |
2.0474 | 33000 | 0.01 | - |
2.0784 | 33500 | 0.0091 | - |
2.1094 | 34000 | 0.0131 | - |
2.1405 | 34500 | 0.0096 | - |
2.1715 | 35000 | 0.0095 | - |
2.2025 | 35500 | 0.0103 | - |
2.2335 | 36000 | 0.0101 | - |
2.2645 | 36500 | 0.0102 | - |
2.2956 | 37000 | 0.0102 | - |
2.3266 | 37500 | 0.0085 | - |
2.3576 | 38000 | 0.0087 | - |
2.3886 | 38500 | 0.0103 | - |
2.4197 | 39000 | 0.0058 | - |
2.4507 | 39500 | 0.0086 | - |
2.4817 | 40000 | 0.0088 | - |
2.5127 | 40500 | 0.0088 | - |
2.5437 | 41000 | 0.007 | - |
2.5748 | 41500 | 0.0082 | - |
2.6058 | 42000 | 0.0069 | - |
2.6368 | 42500 | 0.0071 | - |
2.6678 | 43000 | 0.0058 | - |
2.6988 | 43500 | 0.0075 | - |
2.7299 | 44000 | 0.0064 | - |
2.7609 | 44500 | 0.0053 | - |
2.7919 | 45000 | 0.0055 | - |
2.8229 | 45500 | 0.0061 | - |
2.8540 | 46000 | 0.0059 | - |
2.8850 | 46500 | 0.0062 | - |
2.9160 | 47000 | 0.0046 | - |
2.9470 | 47500 | 0.0064 | - |
2.9780 | 48000 | 0.0053 | - |
3.0 | 48354 | - | 0.941 |
3.0091 | 48500 | 0.0048 | - |
3.0401 | 49000 | 0.0059 | - |
3.0711 | 49500 | 0.005 | - |
3.1021 | 50000 | 0.005 | 0.9415 |
3.1331 | 50500 | 0.0046 | - |
3.1642 | 51000 | 0.005 | - |
3.1952 | 51500 | 0.0051 | - |
3.2262 | 52000 | 0.0041 | - |
3.2572 | 52500 | 0.0052 | - |
3.2882 | 53000 | 0.0052 | - |
3.3193 | 53500 | 0.0053 | - |
3.3503 | 54000 | 0.0041 | - |
3.3813 | 54500 | 0.0042 | - |
3.4123 | 55000 | 0.0026 | - |
3.4434 | 55500 | 0.0045 | - |
3.4744 | 56000 | 0.0045 | - |
3.5054 | 56500 | 0.0054 | - |
3.5364 | 57000 | 0.0055 | - |
3.5674 | 57500 | 0.0046 | - |
3.5985 | 58000 | 0.0045 | - |
3.6295 | 58500 | 0.0041 | - |
3.6605 | 59000 | 0.0037 | - |
3.6915 | 59500 | 0.003 | - |
3.7225 | 60000 | 0.0039 | - |
3.7536 | 60500 | 0.0027 | - |
3.7846 | 61000 | 0.0041 | - |
3.8156 | 61500 | 0.003 | - |
3.8466 | 62000 | 0.0027 | - |
3.8777 | 62500 | 0.0039 | - |
3.9087 | 63000 | 0.0038 | - |
3.9397 | 63500 | 0.0029 | - |
3.9707 | 64000 | 0.0037 | - |
4.0 | 64472 | - | 0.9365 |
4.0017 | 64500 | 0.0023 | - |
4.0328 | 65000 | 0.0034 | - |
4.0638 | 65500 | 0.0033 | - |
4.0948 | 66000 | 0.0033 | - |
4.1258 | 66500 | 0.004 | - |
4.1568 | 67000 | 0.0026 | - |
4.1879 | 67500 | 0.0026 | - |
4.2189 | 68000 | 0.0025 | - |
4.2499 | 68500 | 0.0037 | - |
4.2809 | 69000 | 0.0041 | - |
4.3119 | 69500 | 0.0031 | - |
4.3430 | 70000 | 0.0025 | - |
4.3740 | 70500 | 0.0025 | - |
4.4050 | 71000 | 0.0022 | - |
4.4360 | 71500 | 0.0016 | - |
4.4671 | 72000 | 0.003 | - |
4.4981 | 72500 | 0.0029 | - |
4.5291 | 73000 | 0.003 | - |
4.5601 | 73500 | 0.0025 | - |
4.5911 | 74000 | 0.0027 | - |
4.6222 | 74500 | 0.0028 | - |
4.6532 | 75000 | 0.003 | - |
4.6842 | 75500 | 0.002 | - |
4.7152 | 76000 | 0.0028 | - |
4.7462 | 76500 | 0.0016 | - |
4.7773 | 77000 | 0.0022 | - |
4.8083 | 77500 | 0.0019 | - |
4.8393 | 78000 | 0.0019 | - |
4.8703 | 78500 | 0.0026 | - |
4.9014 | 79000 | 0.0023 | - |
4.9324 | 79500 | 0.0016 | - |
4.9634 | 80000 | 0.0019 | - |
4.9944 | 80500 | 0.0018 | - |
5.0 | 80590 | - | 0.937 |
5.0254 | 81000 | 0.0028 | - |
5.0565 | 81500 | 0.0019 | - |
5.0875 | 82000 | 0.0024 | - |
5.1185 | 82500 | 0.0016 | - |
5.1495 | 83000 | 0.0015 | - |
5.1805 | 83500 | 0.0017 | - |
5.2116 | 84000 | 0.0016 | - |
5.2426 | 84500 | 0.0026 | - |
5.2736 | 85000 | 0.0029 | - |
5.3046 | 85500 | 0.0027 | - |
5.3356 | 86000 | 0.002 | - |
5.3667 | 86500 | 0.002 | - |
5.3977 | 87000 | 0.0021 | - |
5.4287 | 87500 | 0.0011 | - |
5.4597 | 88000 | 0.0016 | - |
5.4908 | 88500 | 0.0019 | - |
5.5218 | 89000 | 0.0027 | - |
5.5528 | 89500 | 0.0012 | - |
5.5838 | 90000 | 0.0012 | - |
5.6148 | 90500 | 0.0016 | - |
5.6459 | 91000 | 0.0019 | - |
5.6769 | 91500 | 0.0016 | - |
5.7079 | 92000 | 0.0027 | - |
5.7389 | 92500 | 0.0013 | - |
5.7699 | 93000 | 0.0013 | - |
5.8010 | 93500 | 0.0015 | - |
5.8320 | 94000 | 0.0016 | - |
5.8630 | 94500 | 0.002 | - |
5.8940 | 95000 | 0.001 | - |
5.9251 | 95500 | 0.0014 | - |
5.9561 | 96000 | 0.0021 | - |
5.9871 | 96500 | 0.0022 | - |
6.0 | 96708 | - | 0.933 |
6.0181 | 97000 | 0.0016 | - |
6.0491 | 97500 | 0.0015 | - |
6.0802 | 98000 | 0.0011 | - |
6.1112 | 98500 | 0.0016 | - |
6.1422 | 99000 | 0.001 | - |
6.1732 | 99500 | 0.0013 | - |
6.2042 | 100000 | 0.0015 | 0.9365 |
6.2353 | 100500 | 0.0017 | - |
6.2663 | 101000 | 0.0015 | - |
6.2973 | 101500 | 0.0016 | - |
6.3283 | 102000 | 0.001 | - |
6.3593 | 102500 | 0.0013 | - |
6.3904 | 103000 | 0.0013 | - |
6.4214 | 103500 | 0.0011 | - |
6.4524 | 104000 | 0.0007 | - |
6.4834 | 104500 | 0.0013 | - |
6.5145 | 105000 | 0.0011 | - |
6.5455 | 105500 | 0.0011 | - |
6.5765 | 106000 | 0.0015 | - |
6.6075 | 106500 | 0.002 | - |
6.6385 | 107000 | 0.0011 | - |
6.6696 | 107500 | 0.0013 | - |
6.7006 | 108000 | 0.0017 | - |
6.7316 | 108500 | 0.0008 | - |
6.7626 | 109000 | 0.0011 | - |
6.7936 | 109500 | 0.0008 | - |
6.8247 | 110000 | 0.0009 | - |
6.8557 | 110500 | 0.0014 | - |
6.8867 | 111000 | 0.0014 | - |
6.9177 | 111500 | 0.0014 | - |
6.9488 | 112000 | 0.0014 | - |
6.9798 | 112500 | 0.0013 | - |
7.0 | 112826 | - | 0.9390 |
7.0108 | 113000 | 0.0011 | - |
7.0418 | 113500 | 0.0013 | - |
7.0728 | 114000 | 0.0012 | - |
7.1039 | 114500 | 0.001 | - |
7.1349 | 115000 | 0.0016 | - |
7.1659 | 115500 | 0.0009 | - |
7.1969 | 116000 | 0.0009 | - |
7.2279 | 116500 | 0.0007 | - |
7.2590 | 117000 | 0.0008 | - |
7.2900 | 117500 | 0.0014 | - |
7.3210 | 118000 | 0.0012 | - |
7.3520 | 118500 | 0.0007 | - |
7.3831 | 119000 | 0.001 | - |
7.4141 | 119500 | 0.001 | - |
7.4451 | 120000 | 0.0007 | - |
7.4761 | 120500 | 0.0008 | - |
7.5071 | 121000 | 0.0009 | - |
7.5382 | 121500 | 0.0009 | - |
7.5692 | 122000 | 0.001 | - |
7.6002 | 122500 | 0.0009 | - |
7.6312 | 123000 | 0.0007 | - |
7.6622 | 123500 | 0.0009 | - |
7.6933 | 124000 | 0.0007 | - |
7.7243 | 124500 | 0.0012 | - |
7.7553 | 125000 | 0.001 | - |
7.7863 | 125500 | 0.0005 | - |
7.8173 | 126000 | 0.0005 | - |
7.8484 | 126500 | 0.0008 | - |
7.8794 | 127000 | 0.0014 | - |
7.9104 | 127500 | 0.0014 | - |
7.9414 | 128000 | 0.0009 | - |
7.9725 | 128500 | 0.0008 | - |
8.0 | 128944 | - | 0.94 |
8.0035 | 129000 | 0.0013 | - |
8.0345 | 129500 | 0.0007 | - |
8.0655 | 130000 | 0.0007 | - |
8.0965 | 130500 | 0.0008 | - |
8.1276 | 131000 | 0.0009 | - |
8.1586 | 131500 | 0.0009 | - |
8.1896 | 132000 | 0.0007 | - |
8.2206 | 132500 | 0.0008 | - |
8.2516 | 133000 | 0.0008 | - |
8.2827 | 133500 | 0.0006 | - |
8.3137 | 134000 | 0.0008 | - |
8.3447 | 134500 | 0.001 | - |
8.3757 | 135000 | 0.0006 | - |
8.4068 | 135500 | 0.0007 | - |
8.4378 | 136000 | 0.0007 | - |
8.4688 | 136500 | 0.0009 | - |
8.4998 | 137000 | 0.0008 | - |
8.5308 | 137500 | 0.0006 | - |
8.5619 | 138000 | 0.0008 | - |
8.5929 | 138500 | 0.0007 | - |
8.6239 | 139000 | 0.0008 | - |
8.6549 | 139500 | 0.0006 | - |
8.6859 | 140000 | 0.0005 | - |
8.7170 | 140500 | 0.0006 | - |
8.7480 | 141000 | 0.0006 | - |
8.7790 | 141500 | 0.0006 | - |
8.8100 | 142000 | 0.0005 | - |
8.8410 | 142500 | 0.0006 | - |
8.8721 | 143000 | 0.0005 | - |
8.9031 | 143500 | 0.0006 | - |
8.9341 | 144000 | 0.0009 | - |
8.9651 | 144500 | 0.0007 | - |
8.9962 | 145000 | 0.0007 | - |
9.0 | 145062 | - | 0.938 |
9.0272 | 145500 | 0.0007 | - |
9.0582 | 146000 | 0.0007 | - |
9.0892 | 146500 | 0.0007 | - |
9.1202 | 147000 | 0.0007 | - |
9.1513 | 147500 | 0.0005 | - |
9.1823 | 148000 | 0.0005 | - |
9.2133 | 148500 | 0.0005 | - |
9.2443 | 149000 | 0.0007 | - |
9.2753 | 149500 | 0.0006 | - |
9.3064 | 150000 | 0.0005 | 0.938 |
9.3374 | 150500 | 0.0005 | - |
9.3684 | 151000 | 0.0004 | - |
9.3994 | 151500 | 0.0007 | - |
9.4305 | 152000 | 0.0006 | - |
9.4615 | 152500 | 0.0006 | - |
9.4925 | 153000 | 0.0012 | - |
9.5235 | 153500 | 0.0015 | - |
9.5545 | 154000 | 0.0006 | - |
9.5856 | 154500 | 0.0004 | - |
9.6166 | 155000 | 0.0004 | - |
9.6476 | 155500 | 0.0007 | - |
9.6786 | 156000 | 0.0005 | - |
9.7096 | 156500 | 0.0006 | - |
9.7407 | 157000 | 0.0004 | - |
9.7717 | 157500 | 0.0004 | - |
9.8027 | 158000 | 0.0006 | - |
9.8337 | 158500 | 0.0004 | - |
9.8647 | 159000 | 0.0005 | - |
9.8958 | 159500 | 0.0005 | - |
9.9268 | 160000 | 0.0004 | - |
9.9578 | 160500 | 0.0007 | - |
9.9888 | 161000 | 0.0008 | - |
10.0 | 161180 | - | 0.9405 |
10.0199 | 161500 | 0.0009 | - |
10.0509 | 162000 | 0.0007 | - |
10.0819 | 162500 | 0.0007 | - |
10.1129 | 163000 | 0.0007 | - |
10.1439 | 163500 | 0.0005 | - |
10.1750 | 164000 | 0.0005 | - |
10.2060 | 164500 | 0.0004 | - |
10.2370 | 165000 | 0.0006 | - |
10.2680 | 165500 | 0.0006 | - |
10.2990 | 166000 | 0.0005 | - |
10.3301 | 166500 | 0.0005 | - |
10.3611 | 167000 | 0.0006 | - |
10.3921 | 167500 | 0.0006 | - |
10.4231 | 168000 | 0.0003 | - |
10.4542 | 168500 | 0.0005 | - |
10.4852 | 169000 | 0.001 | - |
10.5162 | 169500 | 0.0007 | - |
10.5472 | 170000 | 0.0003 | - |
10.5782 | 170500 | 0.0005 | - |
10.6093 | 171000 | 0.0003 | - |
10.6403 | 171500 | 0.0004 | - |
10.6713 | 172000 | 0.0006 | - |
10.7023 | 172500 | 0.0006 | - |
10.7333 | 173000 | 0.0005 | - |
10.7644 | 173500 | 0.0004 | - |
10.7954 | 174000 | 0.0003 | - |
10.8264 | 174500 | 0.0007 | - |
10.8574 | 175000 | 0.0005 | - |
10.8884 | 175500 | 0.0003 | - |
10.9195 | 176000 | 0.0006 | - |
10.9505 | 176500 | 0.001 | - |
10.9815 | 177000 | 0.0007 | - |
11.0 | 177298 | - | 0.9345 |
11.0125 | 177500 | 0.0003 | - |
11.0436 | 178000 | 0.0003 | - |
11.0746 | 178500 | 0.0005 | - |
11.1056 | 179000 | 0.0005 | - |
11.1366 | 179500 | 0.0007 | - |
11.1676 | 180000 | 0.0008 | - |
11.1987 | 180500 | 0.0004 | - |
11.2297 | 181000 | 0.0006 | - |
11.2607 | 181500 | 0.0006 | - |
11.2917 | 182000 | 0.0009 | - |
11.3227 | 182500 | 0.0005 | - |
11.3538 | 183000 | 0.0004 | - |
11.3848 | 183500 | 0.0004 | - |
11.4158 | 184000 | 0.0005 | - |
11.4468 | 184500 | 0.0003 | - |
11.4779 | 185000 | 0.0002 | - |
11.5089 | 185500 | 0.0003 | - |
11.5399 | 186000 | 0.0007 | - |
11.5709 | 186500 | 0.0003 | - |
11.6019 | 187000 | 0.0003 | - |
11.6330 | 187500 | 0.0004 | - |
11.6640 | 188000 | 0.0007 | - |
11.6950 | 188500 | 0.0003 | - |
11.7260 | 189000 | 0.0003 | - |
11.7570 | 189500 | 0.0004 | - |
11.7881 | 190000 | 0.0004 | - |
11.8191 | 190500 | 0.0003 | - |
11.8501 | 191000 | 0.0003 | - |
11.8811 | 191500 | 0.0003 | - |
11.9121 | 192000 | 0.0002 | - |
11.9432 | 192500 | 0.0008 | - |
11.9742 | 193000 | 0.0004 | - |
12.0 | 193416 | - | 0.944 |
12.0052 | 193500 | 0.0005 | - |
12.0362 | 194000 | 0.0002 | - |
12.0673 | 194500 | 0.0003 | - |
12.0983 | 195000 | 0.0004 | - |
12.1293 | 195500 | 0.0005 | - |
12.1603 | 196000 | 0.0004 | - |
12.1913 | 196500 | 0.0002 | - |
12.2224 | 197000 | 0.0002 | - |
12.2534 | 197500 | 0.0003 | - |
12.2844 | 198000 | 0.0003 | - |
12.3154 | 198500 | 0.0005 | - |
12.3464 | 199000 | 0.0004 | - |
12.3775 | 199500 | 0.0004 | - |
12.4085 | 200000 | 0.0003 | 0.9435 |
12.4395 | 200500 | 0.0003 | - |
12.4705 | 201000 | 0.0004 | - |
12.5016 | 201500 | 0.0009 | - |
12.5326 | 202000 | 0.0005 | - |
12.5636 | 202500 | 0.0003 | - |
12.5946 | 203000 | 0.0003 | - |
12.6256 | 203500 | 0.0002 | - |
12.6567 | 204000 | 0.0003 | - |
12.6877 | 204500 | 0.0002 | - |
12.7187 | 205000 | 0.0005 | - |
12.7497 | 205500 | 0.0003 | - |
12.7807 | 206000 | 0.0004 | - |
12.8118 | 206500 | 0.0003 | - |
12.8428 | 207000 | 0.0003 | - |
12.8738 | 207500 | 0.0003 | - |
12.9048 | 208000 | 0.0003 | - |
12.9358 | 208500 | 0.0006 | - |
12.9669 | 209000 | 0.0004 | - |
12.9979 | 209500 | 0.0004 | - |
13.0 | 209534 | - | 0.9455 |
Framework Versions
- Python: 3.10.17
- Sentence Transformers: 4.1.0
- Transformers: 4.46.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.1.1
- Datasets: 2.18.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 13
Model tree for Bheri/labse-en-sa-v1
Base model
sentence-transformers/LaBSEEvaluation results
- Src2Trg Accuracy on eval en saself-reported0.944
- Trg2Src Accuracy on eval en saself-reported0.947
- Mean Accuracy on eval en saself-reported0.946