Initial commit
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +860 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- eval/translation_evaluation_eval-en-sa_results.csv +16 -0
- model.safetensors +3 -0
- modules.json +26 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +3 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffbcac47ef2d8cec454a28543d8f383326a5d20ee044fa03ce473ead5e9050d5
|
3 |
+
size 2362528
|
README.md
ADDED
@@ -0,0 +1,860 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:257886
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: sentence-transformers/LaBSE
|
10 |
+
widget:
|
11 |
+
- source_sentence: 'Karwa Chauth is a festival celebrated by Hindu women of Northern
|
12 |
+
and Western India on the fourth day after Purnima in the month of Kartika.
|
13 |
+
|
14 |
+
'
|
15 |
+
sentences:
|
16 |
+
- 'तस्याः युग्मभ्रातुः वंशानुगत-राजकुमारस्य जाक् इत्यस्य निमेषद्वयात् प्राक् सा
|
17 |
+
अजायत।
|
18 |
+
|
19 |
+
'
|
20 |
+
- '"तथापि, Internet Explorer नोपयोक्तव्यम् । यतो हि तत् सम्यक् डिस्प्ले न करोति
|
21 |
+
।"'
|
22 |
+
- 'कर्वा-चौथ् इति उत्सवः उत्तर-पश्चिम-भारतस्य हिन्दु-महिलाभिः कार्तिकमासे पूर्णिमायाः
|
23 |
+
अनन्तरं चतुर्थदिने आचर्यते।
|
24 |
+
|
25 |
+
'
|
26 |
+
- source_sentence: '"""And if any man will hurt them, fire proceedeth out of their
|
27 |
+
mouth, and devoureth their enemies: and if any man will hurt them, he must in
|
28 |
+
this manner be killed."""'
|
29 |
+
sentences:
|
30 |
+
- '"C तथा C++ उभयोः मध्येऽपि, इदं समानं मार्गं इम्प्लिमेण्ट् कर्तुमनुसरति ।"'
|
31 |
+
- यदि केचित् तौ हिंसितुं चेष्टन्ते तर्हि तयो र्वदनाभ्याम् अग्नि र्निर्गत्य तयोः
|
32 |
+
शत्रून् भस्मीकरिष्यति। यः कश्चित् तौ हिंसितुं चेष्टते तेनैवमेव विनष्टव्यं।
|
33 |
+
- यवक्रीत उवाच नायं शक्यस्त्वया बड़े महानोघस्तपोधन। अशक्याद् विनिवर्तस्व शक्यमर्थं
|
34 |
+
समारभ॥
|
35 |
+
- source_sentence: 'It tarnishes in air to produce a whitish oxidized layer on the
|
36 |
+
surface.
|
37 |
+
|
38 |
+
'
|
39 |
+
sentences:
|
40 |
+
- उपस्थितानां रत्नानां श्रेष्ठानामर्घहारिणाम्। नादृश्यत परः पारो नापरस्तत्र भारत॥
|
41 |
+
- 'इदं वायौ कलङ्कितं भवति, येन तले श्वेतवर्णीयं आक्सिडैस्ड्-आस्तरणं निर्मीयते।
|
42 |
+
|
43 |
+
'
|
44 |
+
- आचार्येणाभ्यनुज्ञातश्चतुर्णामेकमाश्रमम्। आविमोक्षाच्छरीरस्य सोऽवतिष्ठेद् यथाविधि॥
|
45 |
+
- source_sentence: 'If you''re planning to fund part or all of your child''s higher
|
46 |
+
education, it''s best to start saving early on.
|
47 |
+
|
48 |
+
'
|
49 |
+
sentences:
|
50 |
+
- समयं वाजिमेधस्य विदित्वा पुरुषर्षभः। यथोक्तो धर्मपुत्रेण प्रव्रजन् स्वपुरी प्रति॥
|
51 |
+
- 'यदि भवान् भवतः सन्ततेः उच्चशिक्षायाः कृते, आंशिकं वा सम्पूर्णं वा शुल्कं दातुम्
|
52 |
+
इच्छति तर्हि तदर्थं पूर्वमेव धनसञ्चयस्य आरम्भः क्षेमकरः भवेत्।
|
53 |
+
|
54 |
+
'
|
55 |
+
- '"""तदनन्तरं तेषां सप्तकंसधारिणां सप्तदूतानाम् एक आगत्य मां सम्भाष्यावदत्, अत्रागच्छ,
|
56 |
+
मेदिन्या नरपतयो यया वेश्यया सार्द्धं व्यभिचारकर्म्म कृतवन्तः,"""'
|
57 |
+
- source_sentence: In spite of these, Dhananjaya made Drona's son carless by cutting
|
58 |
+
off the out-stretched bow of his foe with three shafts, killing his driver with
|
59 |
+
a razor like shaft and making away with his banner with three and his four horses
|
60 |
+
with four other shafts.
|
61 |
+
sentences:
|
62 |
+
- तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च
|
63 |
+
पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥
|
64 |
+
- एकवारं पूरितं चेत् एतां प्रक्रियां undo कर्तुं न शक्नुमः ।
|
65 |
+
- क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।
|
66 |
+
pipeline_tag: sentence-similarity
|
67 |
+
library_name: sentence-transformers
|
68 |
+
metrics:
|
69 |
+
- src2trg_accuracy
|
70 |
+
- trg2src_accuracy
|
71 |
+
- mean_accuracy
|
72 |
+
model-index:
|
73 |
+
- name: SentenceTransformer based on sentence-transformers/LaBSE
|
74 |
+
results:
|
75 |
+
- task:
|
76 |
+
type: translation
|
77 |
+
name: Translation
|
78 |
+
dataset:
|
79 |
+
name: eval en sa
|
80 |
+
type: eval-en-sa
|
81 |
+
metrics:
|
82 |
+
- type: src2trg_accuracy
|
83 |
+
value: 0.944
|
84 |
+
name: Src2Trg Accuracy
|
85 |
+
- type: trg2src_accuracy
|
86 |
+
value: 0.947
|
87 |
+
name: Trg2Src Accuracy
|
88 |
+
- type: mean_accuracy
|
89 |
+
value: 0.9455
|
90 |
+
name: Mean Accuracy
|
91 |
+
---
|
92 |
+
|
93 |
+
# SentenceTransformer based on sentence-transformers/LaBSE
|
94 |
+
|
95 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
96 |
+
|
97 |
+
## Model Details
|
98 |
+
|
99 |
+
### Model Description
|
100 |
+
- **Model Type:** Sentence Transformer
|
101 |
+
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
|
102 |
+
- **Maximum Sequence Length:** 128 tokens
|
103 |
+
- **Output Dimensionality:** 768 dimensions
|
104 |
+
- **Similarity Function:** Cosine Similarity
|
105 |
+
<!-- - **Training Dataset:** Unknown -->
|
106 |
+
<!-- - **Language:** Unknown -->
|
107 |
+
<!-- - **License:** Unknown -->
|
108 |
+
|
109 |
+
### Model Sources
|
110 |
+
|
111 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
112 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
113 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
114 |
+
|
115 |
+
### Full Model Architecture
|
116 |
+
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
121 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
122 |
+
(3): Normalize()
|
123 |
+
)
|
124 |
+
```
|
125 |
+
|
126 |
+
## Usage
|
127 |
+
|
128 |
+
### Direct Usage (Sentence Transformers)
|
129 |
+
|
130 |
+
First install the Sentence Transformers library:
|
131 |
+
|
132 |
+
```bash
|
133 |
+
pip install -U sentence-transformers
|
134 |
+
```
|
135 |
+
|
136 |
+
Then you can load this model and run inference.
|
137 |
+
```python
|
138 |
+
from sentence_transformers import SentenceTransformer
|
139 |
+
|
140 |
+
# Download from the 🤗 Hub
|
141 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
142 |
+
# Run inference
|
143 |
+
sentences = [
|
144 |
+
"In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
|
145 |
+
'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
|
146 |
+
'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
|
147 |
+
]
|
148 |
+
embeddings = model.encode(sentences)
|
149 |
+
print(embeddings.shape)
|
150 |
+
# [3, 768]
|
151 |
+
|
152 |
+
# Get the similarity scores for the embeddings
|
153 |
+
similarities = model.similarity(embeddings, embeddings)
|
154 |
+
print(similarities.shape)
|
155 |
+
# [3, 3]
|
156 |
+
```
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Direct Usage (Transformers)
|
160 |
+
|
161 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Downstream Usage (Sentence Transformers)
|
168 |
+
|
169 |
+
You can finetune this model on your own dataset.
|
170 |
+
|
171 |
+
<details><summary>Click to expand</summary>
|
172 |
+
|
173 |
+
</details>
|
174 |
+
-->
|
175 |
+
|
176 |
+
<!--
|
177 |
+
### Out-of-Scope Use
|
178 |
+
|
179 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
## Evaluation
|
183 |
+
|
184 |
+
### Metrics
|
185 |
+
|
186 |
+
#### Translation
|
187 |
+
|
188 |
+
* Dataset: `eval-en-sa`
|
189 |
+
* Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
|
190 |
+
|
191 |
+
| Metric | Value |
|
192 |
+
|:------------------|:-----------|
|
193 |
+
| src2trg_accuracy | 0.944 |
|
194 |
+
| trg2src_accuracy | 0.947 |
|
195 |
+
| **mean_accuracy** | **0.9455** |
|
196 |
+
|
197 |
+
<!--
|
198 |
+
## Bias, Risks and Limitations
|
199 |
+
|
200 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
201 |
+
-->
|
202 |
+
|
203 |
+
<!--
|
204 |
+
### Recommendations
|
205 |
+
|
206 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
207 |
+
-->
|
208 |
+
|
209 |
+
## Training Details
|
210 |
+
|
211 |
+
### Training Dataset
|
212 |
+
|
213 |
+
#### Unnamed Dataset
|
214 |
+
|
215 |
+
* Size: 257,886 training samples
|
216 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
217 |
+
* Approximate statistics based on the first 1000 samples:
|
218 |
+
| | sentence_0 | sentence_1 |
|
219 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
220 |
+
| type | string | string |
|
221 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 31.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 40.18 tokens</li><li>max: 128 tokens</li></ul> |
|
222 |
+
* Samples:
|
223 |
+
| sentence_0 | sentence_1 |
|
224 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
|
225 |
+
| <code>It normally connects to port 80 on a computer.<br></code> | <code>इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।<br></code> |
|
226 |
+
| <code>He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners.</code> | <code>सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।</code> |
|
227 |
+
| <code>By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.<br></code> | <code>१६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।<br></code> |
|
228 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
229 |
+
```json
|
230 |
+
{
|
231 |
+
"scale": 20.0,
|
232 |
+
"similarity_fct": "cos_sim"
|
233 |
+
}
|
234 |
+
```
|
235 |
+
|
236 |
+
### Training Hyperparameters
|
237 |
+
#### Non-Default Hyperparameters
|
238 |
+
|
239 |
+
- `eval_strategy`: steps
|
240 |
+
- `per_device_train_batch_size`: 4
|
241 |
+
- `per_device_eval_batch_size`: 4
|
242 |
+
- `num_train_epochs`: 15
|
243 |
+
- `multi_dataset_batch_sampler`: round_robin
|
244 |
+
|
245 |
+
#### All Hyperparameters
|
246 |
+
<details><summary>Click to expand</summary>
|
247 |
+
|
248 |
+
- `overwrite_output_dir`: False
|
249 |
+
- `do_predict`: False
|
250 |
+
- `eval_strategy`: steps
|
251 |
+
- `prediction_loss_only`: True
|
252 |
+
- `per_device_train_batch_size`: 4
|
253 |
+
- `per_device_eval_batch_size`: 4
|
254 |
+
- `per_gpu_train_batch_size`: None
|
255 |
+
- `per_gpu_eval_batch_size`: None
|
256 |
+
- `gradient_accumulation_steps`: 1
|
257 |
+
- `eval_accumulation_steps`: None
|
258 |
+
- `torch_empty_cache_steps`: None
|
259 |
+
- `learning_rate`: 5e-05
|
260 |
+
- `weight_decay`: 0.0
|
261 |
+
- `adam_beta1`: 0.9
|
262 |
+
- `adam_beta2`: 0.999
|
263 |
+
- `adam_epsilon`: 1e-08
|
264 |
+
- `max_grad_norm`: 1
|
265 |
+
- `num_train_epochs`: 15
|
266 |
+
- `max_steps`: -1
|
267 |
+
- `lr_scheduler_type`: linear
|
268 |
+
- `lr_scheduler_kwargs`: {}
|
269 |
+
- `warmup_ratio`: 0.0
|
270 |
+
- `warmup_steps`: 0
|
271 |
+
- `log_level`: passive
|
272 |
+
- `log_level_replica`: warning
|
273 |
+
- `log_on_each_node`: True
|
274 |
+
- `logging_nan_inf_filter`: True
|
275 |
+
- `save_safetensors`: True
|
276 |
+
- `save_on_each_node`: False
|
277 |
+
- `save_only_model`: False
|
278 |
+
- `restore_callback_states_from_checkpoint`: False
|
279 |
+
- `no_cuda`: False
|
280 |
+
- `use_cpu`: False
|
281 |
+
- `use_mps_device`: False
|
282 |
+
- `seed`: 42
|
283 |
+
- `data_seed`: None
|
284 |
+
- `jit_mode_eval`: False
|
285 |
+
- `use_ipex`: False
|
286 |
+
- `bf16`: False
|
287 |
+
- `fp16`: False
|
288 |
+
- `fp16_opt_level`: O1
|
289 |
+
- `half_precision_backend`: auto
|
290 |
+
- `bf16_full_eval`: False
|
291 |
+
- `fp16_full_eval`: False
|
292 |
+
- `tf32`: None
|
293 |
+
- `local_rank`: 0
|
294 |
+
- `ddp_backend`: None
|
295 |
+
- `tpu_num_cores`: None
|
296 |
+
- `tpu_metrics_debug`: False
|
297 |
+
- `debug`: []
|
298 |
+
- `dataloader_drop_last`: False
|
299 |
+
- `dataloader_num_workers`: 0
|
300 |
+
- `dataloader_prefetch_factor`: None
|
301 |
+
- `past_index`: -1
|
302 |
+
- `disable_tqdm`: False
|
303 |
+
- `remove_unused_columns`: True
|
304 |
+
- `label_names`: None
|
305 |
+
- `load_best_model_at_end`: False
|
306 |
+
- `ignore_data_skip`: False
|
307 |
+
- `fsdp`: []
|
308 |
+
- `fsdp_min_num_params`: 0
|
309 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
310 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
311 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
312 |
+
- `deepspeed`: None
|
313 |
+
- `label_smoothing_factor`: 0.0
|
314 |
+
- `optim`: adamw_torch
|
315 |
+
- `optim_args`: None
|
316 |
+
- `adafactor`: False
|
317 |
+
- `group_by_length`: False
|
318 |
+
- `length_column_name`: length
|
319 |
+
- `ddp_find_unused_parameters`: None
|
320 |
+
- `ddp_bucket_cap_mb`: None
|
321 |
+
- `ddp_broadcast_buffers`: False
|
322 |
+
- `dataloader_pin_memory`: True
|
323 |
+
- `dataloader_persistent_workers`: False
|
324 |
+
- `skip_memory_metrics`: True
|
325 |
+
- `use_legacy_prediction_loop`: False
|
326 |
+
- `push_to_hub`: False
|
327 |
+
- `resume_from_checkpoint`: None
|
328 |
+
- `hub_model_id`: None
|
329 |
+
- `hub_strategy`: every_save
|
330 |
+
- `hub_private_repo`: False
|
331 |
+
- `hub_always_push`: False
|
332 |
+
- `gradient_checkpointing`: False
|
333 |
+
- `gradient_checkpointing_kwargs`: None
|
334 |
+
- `include_inputs_for_metrics`: False
|
335 |
+
- `include_for_metrics`: []
|
336 |
+
- `eval_do_concat_batches`: True
|
337 |
+
- `fp16_backend`: auto
|
338 |
+
- `push_to_hub_model_id`: None
|
339 |
+
- `push_to_hub_organization`: None
|
340 |
+
- `mp_parameters`:
|
341 |
+
- `auto_find_batch_size`: False
|
342 |
+
- `full_determinism`: False
|
343 |
+
- `torchdynamo`: None
|
344 |
+
- `ray_scope`: last
|
345 |
+
- `ddp_timeout`: 1800
|
346 |
+
- `torch_compile`: False
|
347 |
+
- `torch_compile_backend`: None
|
348 |
+
- `torch_compile_mode`: None
|
349 |
+
- `dispatch_batches`: None
|
350 |
+
- `split_batches`: None
|
351 |
+
- `include_tokens_per_second`: False
|
352 |
+
- `include_num_input_tokens_seen`: False
|
353 |
+
- `neftune_noise_alpha`: None
|
354 |
+
- `optim_target_modules`: None
|
355 |
+
- `batch_eval_metrics`: False
|
356 |
+
- `eval_on_start`: False
|
357 |
+
- `use_liger_kernel`: False
|
358 |
+
- `eval_use_gather_object`: False
|
359 |
+
- `average_tokens_across_devices`: False
|
360 |
+
- `prompts`: None
|
361 |
+
- `batch_sampler`: batch_sampler
|
362 |
+
- `multi_dataset_batch_sampler`: round_robin
|
363 |
+
|
364 |
+
</details>
|
365 |
+
|
366 |
+
### Training Logs
|
367 |
+
<details><summary>Click to expand</summary>
|
368 |
+
|
369 |
+
| Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
|
370 |
+
|:-------:|:------:|:-------------:|:------------------------:|
|
371 |
+
| 0.0310 | 500 | 0.4289 | - |
|
372 |
+
| 0.0620 | 1000 | 0.182 | - |
|
373 |
+
| 0.0931 | 1500 | 0.1405 | - |
|
374 |
+
| 0.1241 | 2000 | 0.1097 | - |
|
375 |
+
| 0.1551 | 2500 | 0.0911 | - |
|
376 |
+
| 0.1861 | 3000 | 0.0791 | - |
|
377 |
+
| 0.2171 | 3500 | 0.0725 | - |
|
378 |
+
| 0.2482 | 4000 | 0.067 | - |
|
379 |
+
| 0.2792 | 4500 | 0.0594 | - |
|
380 |
+
| 0.3102 | 5000 | 0.0629 | - |
|
381 |
+
| 0.3412 | 5500 | 0.0535 | - |
|
382 |
+
| 0.3723 | 6000 | 0.0512 | - |
|
383 |
+
| 0.4033 | 6500 | 0.0456 | - |
|
384 |
+
| 0.4343 | 7000 | 0.0462 | - |
|
385 |
+
| 0.4653 | 7500 | 0.043 | - |
|
386 |
+
| 0.4963 | 8000 | 0.0425 | - |
|
387 |
+
| 0.5274 | 8500 | 0.0412 | - |
|
388 |
+
| 0.5584 | 9000 | 0.0418 | - |
|
389 |
+
| 0.5894 | 9500 | 0.0415 | - |
|
390 |
+
| 0.6204 | 10000 | 0.0409 | - |
|
391 |
+
| 0.6514 | 10500 | 0.04 | - |
|
392 |
+
| 0.6825 | 11000 | 0.032 | - |
|
393 |
+
| 0.7135 | 11500 | 0.0323 | - |
|
394 |
+
| 0.7445 | 12000 | 0.0325 | - |
|
395 |
+
| 0.7755 | 12500 | 0.0355 | - |
|
396 |
+
| 0.8066 | 13000 | 0.0285 | - |
|
397 |
+
| 0.8376 | 13500 | 0.0281 | - |
|
398 |
+
| 0.8686 | 14000 | 0.0289 | - |
|
399 |
+
| 0.8996 | 14500 | 0.033 | - |
|
400 |
+
| 0.9306 | 15000 | 0.0336 | - |
|
401 |
+
| 0.9617 | 15500 | 0.0335 | - |
|
402 |
+
| 0.9927 | 16000 | 0.0278 | - |
|
403 |
+
| 1.0 | 16118 | - | 0.913 |
|
404 |
+
| 1.0237 | 16500 | 0.0312 | - |
|
405 |
+
| 1.0547 | 17000 | 0.0294 | - |
|
406 |
+
| 1.0857 | 17500 | 0.0288 | - |
|
407 |
+
| 1.1168 | 18000 | 0.0287 | - |
|
408 |
+
| 1.1478 | 18500 | 0.0245 | - |
|
409 |
+
| 1.1788 | 19000 | 0.0243 | - |
|
410 |
+
| 1.2098 | 19500 | 0.022 | - |
|
411 |
+
| 1.2408 | 20000 | 0.0266 | - |
|
412 |
+
| 1.2719 | 20500 | 0.0224 | - |
|
413 |
+
| 1.3029 | 21000 | 0.0283 | - |
|
414 |
+
| 1.3339 | 21500 | 0.02 | - |
|
415 |
+
| 1.3649 | 22000 | 0.0212 | - |
|
416 |
+
| 1.3960 | 22500 | 0.0197 | - |
|
417 |
+
| 1.4270 | 23000 | 0.0174 | - |
|
418 |
+
| 1.4580 | 23500 | 0.0179 | - |
|
419 |
+
| 1.4890 | 24000 | 0.0187 | - |
|
420 |
+
| 1.5200 | 24500 | 0.0191 | - |
|
421 |
+
| 1.5511 | 25000 | 0.0151 | - |
|
422 |
+
| 1.5821 | 25500 | 0.0161 | - |
|
423 |
+
| 1.6131 | 26000 | 0.0182 | - |
|
424 |
+
| 1.6441 | 26500 | 0.0155 | - |
|
425 |
+
| 1.6751 | 27000 | 0.013 | - |
|
426 |
+
| 1.7062 | 27500 | 0.0119 | - |
|
427 |
+
| 1.7372 | 28000 | 0.0119 | - |
|
428 |
+
| 1.7682 | 28500 | 0.0133 | - |
|
429 |
+
| 1.7992 | 29000 | 0.0113 | - |
|
430 |
+
| 1.8303 | 29500 | 0.011 | - |
|
431 |
+
| 1.8613 | 30000 | 0.0133 | - |
|
432 |
+
| 1.8923 | 30500 | 0.0114 | - |
|
433 |
+
| 1.9233 | 31000 | 0.0139 | - |
|
434 |
+
| 1.9543 | 31500 | 0.0131 | - |
|
435 |
+
| 1.9854 | 32000 | 0.0115 | - |
|
436 |
+
| 2.0 | 32236 | - | 0.9345 |
|
437 |
+
| 2.0164 | 32500 | 0.01 | - |
|
438 |
+
| 2.0474 | 33000 | 0.01 | - |
|
439 |
+
| 2.0784 | 33500 | 0.0091 | - |
|
440 |
+
| 2.1094 | 34000 | 0.0131 | - |
|
441 |
+
| 2.1405 | 34500 | 0.0096 | - |
|
442 |
+
| 2.1715 | 35000 | 0.0095 | - |
|
443 |
+
| 2.2025 | 35500 | 0.0103 | - |
|
444 |
+
| 2.2335 | 36000 | 0.0101 | - |
|
445 |
+
| 2.2645 | 36500 | 0.0102 | - |
|
446 |
+
| 2.2956 | 37000 | 0.0102 | - |
|
447 |
+
| 2.3266 | 37500 | 0.0085 | - |
|
448 |
+
| 2.3576 | 38000 | 0.0087 | - |
|
449 |
+
| 2.3886 | 38500 | 0.0103 | - |
|
450 |
+
| 2.4197 | 39000 | 0.0058 | - |
|
451 |
+
| 2.4507 | 39500 | 0.0086 | - |
|
452 |
+
| 2.4817 | 40000 | 0.0088 | - |
|
453 |
+
| 2.5127 | 40500 | 0.0088 | - |
|
454 |
+
| 2.5437 | 41000 | 0.007 | - |
|
455 |
+
| 2.5748 | 41500 | 0.0082 | - |
|
456 |
+
| 2.6058 | 42000 | 0.0069 | - |
|
457 |
+
| 2.6368 | 42500 | 0.0071 | - |
|
458 |
+
| 2.6678 | 43000 | 0.0058 | - |
|
459 |
+
| 2.6988 | 43500 | 0.0075 | - |
|
460 |
+
| 2.7299 | 44000 | 0.0064 | - |
|
461 |
+
| 2.7609 | 44500 | 0.0053 | - |
|
462 |
+
| 2.7919 | 45000 | 0.0055 | - |
|
463 |
+
| 2.8229 | 45500 | 0.0061 | - |
|
464 |
+
| 2.8540 | 46000 | 0.0059 | - |
|
465 |
+
| 2.8850 | 46500 | 0.0062 | - |
|
466 |
+
| 2.9160 | 47000 | 0.0046 | - |
|
467 |
+
| 2.9470 | 47500 | 0.0064 | - |
|
468 |
+
| 2.9780 | 48000 | 0.0053 | - |
|
469 |
+
| 3.0 | 48354 | - | 0.941 |
|
470 |
+
| 3.0091 | 48500 | 0.0048 | - |
|
471 |
+
| 3.0401 | 49000 | 0.0059 | - |
|
472 |
+
| 3.0711 | 49500 | 0.005 | - |
|
473 |
+
| 3.1021 | 50000 | 0.005 | 0.9415 |
|
474 |
+
| 3.1331 | 50500 | 0.0046 | - |
|
475 |
+
| 3.1642 | 51000 | 0.005 | - |
|
476 |
+
| 3.1952 | 51500 | 0.0051 | - |
|
477 |
+
| 3.2262 | 52000 | 0.0041 | - |
|
478 |
+
| 3.2572 | 52500 | 0.0052 | - |
|
479 |
+
| 3.2882 | 53000 | 0.0052 | - |
|
480 |
+
| 3.3193 | 53500 | 0.0053 | - |
|
481 |
+
| 3.3503 | 54000 | 0.0041 | - |
|
482 |
+
| 3.3813 | 54500 | 0.0042 | - |
|
483 |
+
| 3.4123 | 55000 | 0.0026 | - |
|
484 |
+
| 3.4434 | 55500 | 0.0045 | - |
|
485 |
+
| 3.4744 | 56000 | 0.0045 | - |
|
486 |
+
| 3.5054 | 56500 | 0.0054 | - |
|
487 |
+
| 3.5364 | 57000 | 0.0055 | - |
|
488 |
+
| 3.5674 | 57500 | 0.0046 | - |
|
489 |
+
| 3.5985 | 58000 | 0.0045 | - |
|
490 |
+
| 3.6295 | 58500 | 0.0041 | - |
|
491 |
+
| 3.6605 | 59000 | 0.0037 | - |
|
492 |
+
| 3.6915 | 59500 | 0.003 | - |
|
493 |
+
| 3.7225 | 60000 | 0.0039 | - |
|
494 |
+
| 3.7536 | 60500 | 0.0027 | - |
|
495 |
+
| 3.7846 | 61000 | 0.0041 | - |
|
496 |
+
| 3.8156 | 61500 | 0.003 | - |
|
497 |
+
| 3.8466 | 62000 | 0.0027 | - |
|
498 |
+
| 3.8777 | 62500 | 0.0039 | - |
|
499 |
+
| 3.9087 | 63000 | 0.0038 | - |
|
500 |
+
| 3.9397 | 63500 | 0.0029 | - |
|
501 |
+
| 3.9707 | 64000 | 0.0037 | - |
|
502 |
+
| 4.0 | 64472 | - | 0.9365 |
|
503 |
+
| 4.0017 | 64500 | 0.0023 | - |
|
504 |
+
| 4.0328 | 65000 | 0.0034 | - |
|
505 |
+
| 4.0638 | 65500 | 0.0033 | - |
|
506 |
+
| 4.0948 | 66000 | 0.0033 | - |
|
507 |
+
| 4.1258 | 66500 | 0.004 | - |
|
508 |
+
| 4.1568 | 67000 | 0.0026 | - |
|
509 |
+
| 4.1879 | 67500 | 0.0026 | - |
|
510 |
+
| 4.2189 | 68000 | 0.0025 | - |
|
511 |
+
| 4.2499 | 68500 | 0.0037 | - |
|
512 |
+
| 4.2809 | 69000 | 0.0041 | - |
|
513 |
+
| 4.3119 | 69500 | 0.0031 | - |
|
514 |
+
| 4.3430 | 70000 | 0.0025 | - |
|
515 |
+
| 4.3740 | 70500 | 0.0025 | - |
|
516 |
+
| 4.4050 | 71000 | 0.0022 | - |
|
517 |
+
| 4.4360 | 71500 | 0.0016 | - |
|
518 |
+
| 4.4671 | 72000 | 0.003 | - |
|
519 |
+
| 4.4981 | 72500 | 0.0029 | - |
|
520 |
+
| 4.5291 | 73000 | 0.003 | - |
|
521 |
+
| 4.5601 | 73500 | 0.0025 | - |
|
522 |
+
| 4.5911 | 74000 | 0.0027 | - |
|
523 |
+
| 4.6222 | 74500 | 0.0028 | - |
|
524 |
+
| 4.6532 | 75000 | 0.003 | - |
|
525 |
+
| 4.6842 | 75500 | 0.002 | - |
|
526 |
+
| 4.7152 | 76000 | 0.0028 | - |
|
527 |
+
| 4.7462 | 76500 | 0.0016 | - |
|
528 |
+
| 4.7773 | 77000 | 0.0022 | - |
|
529 |
+
| 4.8083 | 77500 | 0.0019 | - |
|
530 |
+
| 4.8393 | 78000 | 0.0019 | - |
|
531 |
+
| 4.8703 | 78500 | 0.0026 | - |
|
532 |
+
| 4.9014 | 79000 | 0.0023 | - |
|
533 |
+
| 4.9324 | 79500 | 0.0016 | - |
|
534 |
+
| 4.9634 | 80000 | 0.0019 | - |
|
535 |
+
| 4.9944 | 80500 | 0.0018 | - |
|
536 |
+
| 5.0 | 80590 | - | 0.937 |
|
537 |
+
| 5.0254 | 81000 | 0.0028 | - |
|
538 |
+
| 5.0565 | 81500 | 0.0019 | - |
|
539 |
+
| 5.0875 | 82000 | 0.0024 | - |
|
540 |
+
| 5.1185 | 82500 | 0.0016 | - |
|
541 |
+
| 5.1495 | 83000 | 0.0015 | - |
|
542 |
+
| 5.1805 | 83500 | 0.0017 | - |
|
543 |
+
| 5.2116 | 84000 | 0.0016 | - |
|
544 |
+
| 5.2426 | 84500 | 0.0026 | - |
|
545 |
+
| 5.2736 | 85000 | 0.0029 | - |
|
546 |
+
| 5.3046 | 85500 | 0.0027 | - |
|
547 |
+
| 5.3356 | 86000 | 0.002 | - |
|
548 |
+
| 5.3667 | 86500 | 0.002 | - |
|
549 |
+
| 5.3977 | 87000 | 0.0021 | - |
|
550 |
+
| 5.4287 | 87500 | 0.0011 | - |
|
551 |
+
| 5.4597 | 88000 | 0.0016 | - |
|
552 |
+
| 5.4908 | 88500 | 0.0019 | - |
|
553 |
+
| 5.5218 | 89000 | 0.0027 | - |
|
554 |
+
| 5.5528 | 89500 | 0.0012 | - |
|
555 |
+
| 5.5838 | 90000 | 0.0012 | - |
|
556 |
+
| 5.6148 | 90500 | 0.0016 | - |
|
557 |
+
| 5.6459 | 91000 | 0.0019 | - |
|
558 |
+
| 5.6769 | 91500 | 0.0016 | - |
|
559 |
+
| 5.7079 | 92000 | 0.0027 | - |
|
560 |
+
| 5.7389 | 92500 | 0.0013 | - |
|
561 |
+
| 5.7699 | 93000 | 0.0013 | - |
|
562 |
+
| 5.8010 | 93500 | 0.0015 | - |
|
563 |
+
| 5.8320 | 94000 | 0.0016 | - |
|
564 |
+
| 5.8630 | 94500 | 0.002 | - |
|
565 |
+
| 5.8940 | 95000 | 0.001 | - |
|
566 |
+
| 5.9251 | 95500 | 0.0014 | - |
|
567 |
+
| 5.9561 | 96000 | 0.0021 | - |
|
568 |
+
| 5.9871 | 96500 | 0.0022 | - |
|
569 |
+
| 6.0 | 96708 | - | 0.933 |
|
570 |
+
| 6.0181 | 97000 | 0.0016 | - |
|
571 |
+
| 6.0491 | 97500 | 0.0015 | - |
|
572 |
+
| 6.0802 | 98000 | 0.0011 | - |
|
573 |
+
| 6.1112 | 98500 | 0.0016 | - |
|
574 |
+
| 6.1422 | 99000 | 0.001 | - |
|
575 |
+
| 6.1732 | 99500 | 0.0013 | - |
|
576 |
+
| 6.2042 | 100000 | 0.0015 | 0.9365 |
|
577 |
+
| 6.2353 | 100500 | 0.0017 | - |
|
578 |
+
| 6.2663 | 101000 | 0.0015 | - |
|
579 |
+
| 6.2973 | 101500 | 0.0016 | - |
|
580 |
+
| 6.3283 | 102000 | 0.001 | - |
|
581 |
+
| 6.3593 | 102500 | 0.0013 | - |
|
582 |
+
| 6.3904 | 103000 | 0.0013 | - |
|
583 |
+
| 6.4214 | 103500 | 0.0011 | - |
|
584 |
+
| 6.4524 | 104000 | 0.0007 | - |
|
585 |
+
| 6.4834 | 104500 | 0.0013 | - |
|
586 |
+
| 6.5145 | 105000 | 0.0011 | - |
|
587 |
+
| 6.5455 | 105500 | 0.0011 | - |
|
588 |
+
| 6.5765 | 106000 | 0.0015 | - |
|
589 |
+
| 6.6075 | 106500 | 0.002 | - |
|
590 |
+
| 6.6385 | 107000 | 0.0011 | - |
|
591 |
+
| 6.6696 | 107500 | 0.0013 | - |
|
592 |
+
| 6.7006 | 108000 | 0.0017 | - |
|
593 |
+
| 6.7316 | 108500 | 0.0008 | - |
|
594 |
+
| 6.7626 | 109000 | 0.0011 | - |
|
595 |
+
| 6.7936 | 109500 | 0.0008 | - |
|
596 |
+
| 6.8247 | 110000 | 0.0009 | - |
|
597 |
+
| 6.8557 | 110500 | 0.0014 | - |
|
598 |
+
| 6.8867 | 111000 | 0.0014 | - |
|
599 |
+
| 6.9177 | 111500 | 0.0014 | - |
|
600 |
+
| 6.9488 | 112000 | 0.0014 | - |
|
601 |
+
| 6.9798 | 112500 | 0.0013 | - |
|
602 |
+
| 7.0 | 112826 | - | 0.9390 |
|
603 |
+
| 7.0108 | 113000 | 0.0011 | - |
|
604 |
+
| 7.0418 | 113500 | 0.0013 | - |
|
605 |
+
| 7.0728 | 114000 | 0.0012 | - |
|
606 |
+
| 7.1039 | 114500 | 0.001 | - |
|
607 |
+
| 7.1349 | 115000 | 0.0016 | - |
|
608 |
+
| 7.1659 | 115500 | 0.0009 | - |
|
609 |
+
| 7.1969 | 116000 | 0.0009 | - |
|
610 |
+
| 7.2279 | 116500 | 0.0007 | - |
|
611 |
+
| 7.2590 | 117000 | 0.0008 | - |
|
612 |
+
| 7.2900 | 117500 | 0.0014 | - |
|
613 |
+
| 7.3210 | 118000 | 0.0012 | - |
|
614 |
+
| 7.3520 | 118500 | 0.0007 | - |
|
615 |
+
| 7.3831 | 119000 | 0.001 | - |
|
616 |
+
| 7.4141 | 119500 | 0.001 | - |
|
617 |
+
| 7.4451 | 120000 | 0.0007 | - |
|
618 |
+
| 7.4761 | 120500 | 0.0008 | - |
|
619 |
+
| 7.5071 | 121000 | 0.0009 | - |
|
620 |
+
| 7.5382 | 121500 | 0.0009 | - |
|
621 |
+
| 7.5692 | 122000 | 0.001 | - |
|
622 |
+
| 7.6002 | 122500 | 0.0009 | - |
|
623 |
+
| 7.6312 | 123000 | 0.0007 | - |
|
624 |
+
| 7.6622 | 123500 | 0.0009 | - |
|
625 |
+
| 7.6933 | 124000 | 0.0007 | - |
|
626 |
+
| 7.7243 | 124500 | 0.0012 | - |
|
627 |
+
| 7.7553 | 125000 | 0.001 | - |
|
628 |
+
| 7.7863 | 125500 | 0.0005 | - |
|
629 |
+
| 7.8173 | 126000 | 0.0005 | - |
|
630 |
+
| 7.8484 | 126500 | 0.0008 | - |
|
631 |
+
| 7.8794 | 127000 | 0.0014 | - |
|
632 |
+
| 7.9104 | 127500 | 0.0014 | - |
|
633 |
+
| 7.9414 | 128000 | 0.0009 | - |
|
634 |
+
| 7.9725 | 128500 | 0.0008 | - |
|
635 |
+
| 8.0 | 128944 | - | 0.94 |
|
636 |
+
| 8.0035 | 129000 | 0.0013 | - |
|
637 |
+
| 8.0345 | 129500 | 0.0007 | - |
|
638 |
+
| 8.0655 | 130000 | 0.0007 | - |
|
639 |
+
| 8.0965 | 130500 | 0.0008 | - |
|
640 |
+
| 8.1276 | 131000 | 0.0009 | - |
|
641 |
+
| 8.1586 | 131500 | 0.0009 | - |
|
642 |
+
| 8.1896 | 132000 | 0.0007 | - |
|
643 |
+
| 8.2206 | 132500 | 0.0008 | - |
|
644 |
+
| 8.2516 | 133000 | 0.0008 | - |
|
645 |
+
| 8.2827 | 133500 | 0.0006 | - |
|
646 |
+
| 8.3137 | 134000 | 0.0008 | - |
|
647 |
+
| 8.3447 | 134500 | 0.001 | - |
|
648 |
+
| 8.3757 | 135000 | 0.0006 | - |
|
649 |
+
| 8.4068 | 135500 | 0.0007 | - |
|
650 |
+
| 8.4378 | 136000 | 0.0007 | - |
|
651 |
+
| 8.4688 | 136500 | 0.0009 | - |
|
652 |
+
| 8.4998 | 137000 | 0.0008 | - |
|
653 |
+
| 8.5308 | 137500 | 0.0006 | - |
|
654 |
+
| 8.5619 | 138000 | 0.0008 | - |
|
655 |
+
| 8.5929 | 138500 | 0.0007 | - |
|
656 |
+
| 8.6239 | 139000 | 0.0008 | - |
|
657 |
+
| 8.6549 | 139500 | 0.0006 | - |
|
658 |
+
| 8.6859 | 140000 | 0.0005 | - |
|
659 |
+
| 8.7170 | 140500 | 0.0006 | - |
|
660 |
+
| 8.7480 | 141000 | 0.0006 | - |
|
661 |
+
| 8.7790 | 141500 | 0.0006 | - |
|
662 |
+
| 8.8100 | 142000 | 0.0005 | - |
|
663 |
+
| 8.8410 | 142500 | 0.0006 | - |
|
664 |
+
| 8.8721 | 143000 | 0.0005 | - |
|
665 |
+
| 8.9031 | 143500 | 0.0006 | - |
|
666 |
+
| 8.9341 | 144000 | 0.0009 | - |
|
667 |
+
| 8.9651 | 144500 | 0.0007 | - |
|
668 |
+
| 8.9962 | 145000 | 0.0007 | - |
|
669 |
+
| 9.0 | 145062 | - | 0.938 |
|
670 |
+
| 9.0272 | 145500 | 0.0007 | - |
|
671 |
+
| 9.0582 | 146000 | 0.0007 | - |
|
672 |
+
| 9.0892 | 146500 | 0.0007 | - |
|
673 |
+
| 9.1202 | 147000 | 0.0007 | - |
|
674 |
+
| 9.1513 | 147500 | 0.0005 | - |
|
675 |
+
| 9.1823 | 148000 | 0.0005 | - |
|
676 |
+
| 9.2133 | 148500 | 0.0005 | - |
|
677 |
+
| 9.2443 | 149000 | 0.0007 | - |
|
678 |
+
| 9.2753 | 149500 | 0.0006 | - |
|
679 |
+
| 9.3064 | 150000 | 0.0005 | 0.938 |
|
680 |
+
| 9.3374 | 150500 | 0.0005 | - |
|
681 |
+
| 9.3684 | 151000 | 0.0004 | - |
|
682 |
+
| 9.3994 | 151500 | 0.0007 | - |
|
683 |
+
| 9.4305 | 152000 | 0.0006 | - |
|
684 |
+
| 9.4615 | 152500 | 0.0006 | - |
|
685 |
+
| 9.4925 | 153000 | 0.0012 | - |
|
686 |
+
| 9.5235 | 153500 | 0.0015 | - |
|
687 |
+
| 9.5545 | 154000 | 0.0006 | - |
|
688 |
+
| 9.5856 | 154500 | 0.0004 | - |
|
689 |
+
| 9.6166 | 155000 | 0.0004 | - |
|
690 |
+
| 9.6476 | 155500 | 0.0007 | - |
|
691 |
+
| 9.6786 | 156000 | 0.0005 | - |
|
692 |
+
| 9.7096 | 156500 | 0.0006 | - |
|
693 |
+
| 9.7407 | 157000 | 0.0004 | - |
|
694 |
+
| 9.7717 | 157500 | 0.0004 | - |
|
695 |
+
| 9.8027 | 158000 | 0.0006 | - |
|
696 |
+
| 9.8337 | 158500 | 0.0004 | - |
|
697 |
+
| 9.8647 | 159000 | 0.0005 | - |
|
698 |
+
| 9.8958 | 159500 | 0.0005 | - |
|
699 |
+
| 9.9268 | 160000 | 0.0004 | - |
|
700 |
+
| 9.9578 | 160500 | 0.0007 | - |
|
701 |
+
| 9.9888 | 161000 | 0.0008 | - |
|
702 |
+
| 10.0 | 161180 | - | 0.9405 |
|
703 |
+
| 10.0199 | 161500 | 0.0009 | - |
|
704 |
+
| 10.0509 | 162000 | 0.0007 | - |
|
705 |
+
| 10.0819 | 162500 | 0.0007 | - |
|
706 |
+
| 10.1129 | 163000 | 0.0007 | - |
|
707 |
+
| 10.1439 | 163500 | 0.0005 | - |
|
708 |
+
| 10.1750 | 164000 | 0.0005 | - |
|
709 |
+
| 10.2060 | 164500 | 0.0004 | - |
|
710 |
+
| 10.2370 | 165000 | 0.0006 | - |
|
711 |
+
| 10.2680 | 165500 | 0.0006 | - |
|
712 |
+
| 10.2990 | 166000 | 0.0005 | - |
|
713 |
+
| 10.3301 | 166500 | 0.0005 | - |
|
714 |
+
| 10.3611 | 167000 | 0.0006 | - |
|
715 |
+
| 10.3921 | 167500 | 0.0006 | - |
|
716 |
+
| 10.4231 | 168000 | 0.0003 | - |
|
717 |
+
| 10.4542 | 168500 | 0.0005 | - |
|
718 |
+
| 10.4852 | 169000 | 0.001 | - |
|
719 |
+
| 10.5162 | 169500 | 0.0007 | - |
|
720 |
+
| 10.5472 | 170000 | 0.0003 | - |
|
721 |
+
| 10.5782 | 170500 | 0.0005 | - |
|
722 |
+
| 10.6093 | 171000 | 0.0003 | - |
|
723 |
+
| 10.6403 | 171500 | 0.0004 | - |
|
724 |
+
| 10.6713 | 172000 | 0.0006 | - |
|
725 |
+
| 10.7023 | 172500 | 0.0006 | - |
|
726 |
+
| 10.7333 | 173000 | 0.0005 | - |
|
727 |
+
| 10.7644 | 173500 | 0.0004 | - |
|
728 |
+
| 10.7954 | 174000 | 0.0003 | - |
|
729 |
+
| 10.8264 | 174500 | 0.0007 | - |
|
730 |
+
| 10.8574 | 175000 | 0.0005 | - |
|
731 |
+
| 10.8884 | 175500 | 0.0003 | - |
|
732 |
+
| 10.9195 | 176000 | 0.0006 | - |
|
733 |
+
| 10.9505 | 176500 | 0.001 | - |
|
734 |
+
| 10.9815 | 177000 | 0.0007 | - |
|
735 |
+
| 11.0 | 177298 | - | 0.9345 |
|
736 |
+
| 11.0125 | 177500 | 0.0003 | - |
|
737 |
+
| 11.0436 | 178000 | 0.0003 | - |
|
738 |
+
| 11.0746 | 178500 | 0.0005 | - |
|
739 |
+
| 11.1056 | 179000 | 0.0005 | - |
|
740 |
+
| 11.1366 | 179500 | 0.0007 | - |
|
741 |
+
| 11.1676 | 180000 | 0.0008 | - |
|
742 |
+
| 11.1987 | 180500 | 0.0004 | - |
|
743 |
+
| 11.2297 | 181000 | 0.0006 | - |
|
744 |
+
| 11.2607 | 181500 | 0.0006 | - |
|
745 |
+
| 11.2917 | 182000 | 0.0009 | - |
|
746 |
+
| 11.3227 | 182500 | 0.0005 | - |
|
747 |
+
| 11.3538 | 183000 | 0.0004 | - |
|
748 |
+
| 11.3848 | 183500 | 0.0004 | - |
|
749 |
+
| 11.4158 | 184000 | 0.0005 | - |
|
750 |
+
| 11.4468 | 184500 | 0.0003 | - |
|
751 |
+
| 11.4779 | 185000 | 0.0002 | - |
|
752 |
+
| 11.5089 | 185500 | 0.0003 | - |
|
753 |
+
| 11.5399 | 186000 | 0.0007 | - |
|
754 |
+
| 11.5709 | 186500 | 0.0003 | - |
|
755 |
+
| 11.6019 | 187000 | 0.0003 | - |
|
756 |
+
| 11.6330 | 187500 | 0.0004 | - |
|
757 |
+
| 11.6640 | 188000 | 0.0007 | - |
|
758 |
+
| 11.6950 | 188500 | 0.0003 | - |
|
759 |
+
| 11.7260 | 189000 | 0.0003 | - |
|
760 |
+
| 11.7570 | 189500 | 0.0004 | - |
|
761 |
+
| 11.7881 | 190000 | 0.0004 | - |
|
762 |
+
| 11.8191 | 190500 | 0.0003 | - |
|
763 |
+
| 11.8501 | 191000 | 0.0003 | - |
|
764 |
+
| 11.8811 | 191500 | 0.0003 | - |
|
765 |
+
| 11.9121 | 192000 | 0.0002 | - |
|
766 |
+
| 11.9432 | 192500 | 0.0008 | - |
|
767 |
+
| 11.9742 | 193000 | 0.0004 | - |
|
768 |
+
| 12.0 | 193416 | - | 0.944 |
|
769 |
+
| 12.0052 | 193500 | 0.0005 | - |
|
770 |
+
| 12.0362 | 194000 | 0.0002 | - |
|
771 |
+
| 12.0673 | 194500 | 0.0003 | - |
|
772 |
+
| 12.0983 | 195000 | 0.0004 | - |
|
773 |
+
| 12.1293 | 195500 | 0.0005 | - |
|
774 |
+
| 12.1603 | 196000 | 0.0004 | - |
|
775 |
+
| 12.1913 | 196500 | 0.0002 | - |
|
776 |
+
| 12.2224 | 197000 | 0.0002 | - |
|
777 |
+
| 12.2534 | 197500 | 0.0003 | - |
|
778 |
+
| 12.2844 | 198000 | 0.0003 | - |
|
779 |
+
| 12.3154 | 198500 | 0.0005 | - |
|
780 |
+
| 12.3464 | 199000 | 0.0004 | - |
|
781 |
+
| 12.3775 | 199500 | 0.0004 | - |
|
782 |
+
| 12.4085 | 200000 | 0.0003 | 0.9435 |
|
783 |
+
| 12.4395 | 200500 | 0.0003 | - |
|
784 |
+
| 12.4705 | 201000 | 0.0004 | - |
|
785 |
+
| 12.5016 | 201500 | 0.0009 | - |
|
786 |
+
| 12.5326 | 202000 | 0.0005 | - |
|
787 |
+
| 12.5636 | 202500 | 0.0003 | - |
|
788 |
+
| 12.5946 | 203000 | 0.0003 | - |
|
789 |
+
| 12.6256 | 203500 | 0.0002 | - |
|
790 |
+
| 12.6567 | 204000 | 0.0003 | - |
|
791 |
+
| 12.6877 | 204500 | 0.0002 | - |
|
792 |
+
| 12.7187 | 205000 | 0.0005 | - |
|
793 |
+
| 12.7497 | 205500 | 0.0003 | - |
|
794 |
+
| 12.7807 | 206000 | 0.0004 | - |
|
795 |
+
| 12.8118 | 206500 | 0.0003 | - |
|
796 |
+
| 12.8428 | 207000 | 0.0003 | - |
|
797 |
+
| 12.8738 | 207500 | 0.0003 | - |
|
798 |
+
| 12.9048 | 208000 | 0.0003 | - |
|
799 |
+
| 12.9358 | 208500 | 0.0006 | - |
|
800 |
+
| 12.9669 | 209000 | 0.0004 | - |
|
801 |
+
| 12.9979 | 209500 | 0.0004 | - |
|
802 |
+
| 13.0 | 209534 | - | 0.9455 |
|
803 |
+
|
804 |
+
</details>
|
805 |
+
|
806 |
+
### Framework Versions
|
807 |
+
- Python: 3.10.17
|
808 |
+
- Sentence Transformers: 4.1.0
|
809 |
+
- Transformers: 4.46.3
|
810 |
+
- PyTorch: 2.2.0+cu121
|
811 |
+
- Accelerate: 1.1.1
|
812 |
+
- Datasets: 2.18.0
|
813 |
+
- Tokenizers: 0.20.3
|
814 |
+
|
815 |
+
## Citation
|
816 |
+
|
817 |
+
### BibTeX
|
818 |
+
|
819 |
+
#### Sentence Transformers
|
820 |
+
```bibtex
|
821 |
+
@inproceedings{reimers-2019-sentence-bert,
|
822 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
823 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
824 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
825 |
+
month = "11",
|
826 |
+
year = "2019",
|
827 |
+
publisher = "Association for Computational Linguistics",
|
828 |
+
url = "https://arxiv.org/abs/1908.10084",
|
829 |
+
}
|
830 |
+
```
|
831 |
+
|
832 |
+
#### MultipleNegativesRankingLoss
|
833 |
+
```bibtex
|
834 |
+
@misc{henderson2017efficient,
|
835 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
836 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
837 |
+
year={2017},
|
838 |
+
eprint={1705.00652},
|
839 |
+
archivePrefix={arXiv},
|
840 |
+
primaryClass={cs.CL}
|
841 |
+
}
|
842 |
+
```
|
843 |
+
|
844 |
+
<!--
|
845 |
+
## Glossary
|
846 |
+
|
847 |
+
*Clearly define terms in order to be accessible across audiences.*
|
848 |
+
-->
|
849 |
+
|
850 |
+
<!--
|
851 |
+
## Model Card Authors
|
852 |
+
|
853 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
854 |
+
-->
|
855 |
+
|
856 |
+
<!--
|
857 |
+
## Model Card Contact
|
858 |
+
|
859 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
860 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/LaBSE",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.46.3",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 501153
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.2.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
eval/translation_evaluation_eval-en-sa_results.csv
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,src2trg,trg2src
|
2 |
+
1.0,16118,0.914,0.912
|
3 |
+
2.0,32236,0.942,0.927
|
4 |
+
3.0,48354,0.944,0.938
|
5 |
+
4.0,64472,0.941,0.932
|
6 |
+
5.0,80590,0.943,0.931
|
7 |
+
6.0,96708,0.936,0.93
|
8 |
+
7.0,112826,0.942,0.936
|
9 |
+
8.0,128944,0.948,0.932
|
10 |
+
9.0,145062,0.943,0.933
|
11 |
+
10.0,161180,0.947,0.934
|
12 |
+
11.0,177298,0.941,0.928
|
13 |
+
12.0,193416,0.946,0.942
|
14 |
+
13.0,209534,0.944,0.947
|
15 |
+
14.0,225652,0.947,0.938
|
16 |
+
15.0,241770,0.942,0.943
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d86549e8a22ceea591a5d8dcaa03067c96b047c96cb9b7bfa8c0e55d9869c439
|
3 |
+
size 1883730160
|
modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edba4e57ec22a2a74bbdb601d3f908e4699c34f8386d52ed055e6fe6bd2b51ac
|
3 |
+
size 13632172
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": false,
|
48 |
+
"full_tokenizer_file": null,
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|