saikasyap commited on
Commit
070eaa7
·
verified ·
1 Parent(s): 803dd56

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffbcac47ef2d8cec454a28543d8f383326a5d20ee044fa03ce473ead5e9050d5
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,860 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:257886
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/LaBSE
10
+ widget:
11
+ - source_sentence: 'Karwa Chauth is a festival celebrated by Hindu women of Northern
12
+ and Western India on the fourth day after Purnima in the month of Kartika.
13
+
14
+ '
15
+ sentences:
16
+ - 'तस्याः युग्मभ्रातुः वंशानुगत-राजकुमारस्य जाक् इत्यस्य निमेषद्वयात् प्राक् सा
17
+ अजायत।
18
+
19
+ '
20
+ - '"तथापि, Internet Explorer नोपयोक्तव्यम् । यतो हि तत् सम्यक् डिस्प्ले न करोति
21
+ ।"'
22
+ - 'कर्वा-चौथ् इति उत्सवः उत्तर-पश्चिम-भारतस्य हिन्दु-महिलाभिः कार्तिकमासे पूर्णिमायाः
23
+ अनन्तरं चतुर्थदिने आचर्यते।
24
+
25
+ '
26
+ - source_sentence: '"""And if any man will hurt them, fire proceedeth out of their
27
+ mouth, and devoureth their enemies: and if any man will hurt them, he must in
28
+ this manner be killed."""'
29
+ sentences:
30
+ - '"C तथा C++ उभयोः मध्येऽपि, इदं समानं मार्गं इम्प्लिमेण्ट् कर्तुमनुसरति ।"'
31
+ - यदि केचित् तौ हिंसितुं चेष्टन्ते तर्हि तयो र्वदनाभ्याम् अग्नि र्निर्गत्य तयोः
32
+ शत्रून् भस्मीकरिष्यति। यः कश्चित् तौ हिंसितुं चेष्टते तेनैवमेव विनष्टव्यं।
33
+ - यवक्रीत उवाच नायं शक्यस्त्वया बड़े महानोघस्तपोधन। अशक्याद् विनिवर्तस्व शक्यमर्थं
34
+ समारभ॥
35
+ - source_sentence: 'It tarnishes in air to produce a whitish oxidized layer on the
36
+ surface.
37
+
38
+ '
39
+ sentences:
40
+ - उपस्थितानां रत्नानां श्रेष्ठानामर्घहारिणाम्। नादृश्यत परः पारो नापरस्तत्र भारत॥
41
+ - 'इदं वायौ कलङ्कितं भवति, येन तले श्वेतवर्णीयं आक्सिडैस्ड्-आस्तरणं निर्मीयते।
42
+
43
+ '
44
+ - आचार्येणाभ्यनुज्ञातश्चतुर्णामेकमाश्रमम्। आविमोक्षाच्छरीरस्य सोऽवतिष्ठेद् यथाविधि॥
45
+ - source_sentence: 'If you''re planning to fund part or all of your child''s higher
46
+ education, it''s best to start saving early on.
47
+
48
+ '
49
+ sentences:
50
+ - समयं वाजिमेधस्य विदित्वा पुरुषर्षभः। यथोक्तो धर्मपुत्रेण प्रव्रजन् स्वपुरी प्रति॥
51
+ - 'यदि भवान् भवतः सन्ततेः उच्चशिक्षायाः कृते, आंशिकं वा सम्पूर्णं वा शुल्कं दातुम्
52
+ इच्छति तर्हि तदर्थं पूर्वमेव धनसञ्चयस्य आरम्भः क्षेमकरः भवेत्।
53
+
54
+ '
55
+ - '"""तदनन्तरं तेषां सप्तकंसधारिणां सप्तदूतानाम् एक आगत्य मां सम्भाष्यावदत्, अत्रागच्छ,
56
+ मेदिन्या नरपतयो यया वेश्यया सार्द्धं व्यभिचारकर्म्म कृतवन्तः,"""'
57
+ - source_sentence: In spite of these, Dhananjaya made Drona's son carless by cutting
58
+ off the out-stretched bow of his foe with three shafts, killing his driver with
59
+ a razor like shaft and making away with his banner with three and his four horses
60
+ with four other shafts.
61
+ sentences:
62
+ - तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च
63
+ पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥
64
+ - एकवारं पूरितं चेत् एतां प्रक्रियां undo कर्तुं न शक्नुमः ।
65
+ - क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।
66
+ pipeline_tag: sentence-similarity
67
+ library_name: sentence-transformers
68
+ metrics:
69
+ - src2trg_accuracy
70
+ - trg2src_accuracy
71
+ - mean_accuracy
72
+ model-index:
73
+ - name: SentenceTransformer based on sentence-transformers/LaBSE
74
+ results:
75
+ - task:
76
+ type: translation
77
+ name: Translation
78
+ dataset:
79
+ name: eval en sa
80
+ type: eval-en-sa
81
+ metrics:
82
+ - type: src2trg_accuracy
83
+ value: 0.944
84
+ name: Src2Trg Accuracy
85
+ - type: trg2src_accuracy
86
+ value: 0.947
87
+ name: Trg2Src Accuracy
88
+ - type: mean_accuracy
89
+ value: 0.9455
90
+ name: Mean Accuracy
91
+ ---
92
+
93
+ # SentenceTransformer based on sentence-transformers/LaBSE
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision 836121a0533e5664b21c7aacc5d22951f2b8b25b -->
102
+ - **Maximum Sequence Length:** 128 tokens
103
+ - **Output Dimensionality:** 768 dimensions
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
121
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
122
+ (3): Normalize()
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("sentence_transformers_model_id")
142
+ # Run inference
143
+ sentences = [
144
+ "In spite of these, Dhananjaya made Drona's son carless by cutting off the out-stretched bow of his foe with three shafts, killing his driver with a razor like shaft and making away with his banner with three and his four horses with four other shafts.",
145
+ 'तथापि तं प्रस्फुरदात्तकार्मुकं त्रिभिः शरैर्यन्तृशिरः क्षुरेणा हयांश्चतुर्भिश्च पुनस्त्रिभिर्ध्वज धनंजयो द्रौणिरथादपातयत्॥',
146
+ 'क्रीडां तथा कूर्दनं विना शिक्षा अपूर्णा अस्ति ।',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 768]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Translation
187
+
188
+ * Dataset: `eval-en-sa`
189
+ * Evaluated with [<code>TranslationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TranslationEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:------------------|:-----------|
193
+ | src2trg_accuracy | 0.944 |
194
+ | trg2src_accuracy | 0.947 |
195
+ | **mean_accuracy** | **0.9455** |
196
+
197
+ <!--
198
+ ## Bias, Risks and Limitations
199
+
200
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
201
+ -->
202
+
203
+ <!--
204
+ ### Recommendations
205
+
206
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
207
+ -->
208
+
209
+ ## Training Details
210
+
211
+ ### Training Dataset
212
+
213
+ #### Unnamed Dataset
214
+
215
+ * Size: 257,886 training samples
216
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
217
+ * Approximate statistics based on the first 1000 samples:
218
+ | | sentence_0 | sentence_1 |
219
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
220
+ | type | string | string |
221
+ | details | <ul><li>min: 6 tokens</li><li>mean: 31.6 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 40.18 tokens</li><li>max: 128 tokens</li></ul> |
222
+ * Samples:
223
+ | sentence_0 | sentence_1 |
224
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|
225
+ | <code>It normally connects to port 80 on a computer.<br></code> | <code>इदं सामान्यतः एकस्मिन् सङ्गणके पोर्ट् ८० इत्यनेन सम्पर्कं साधयति।<br></code> |
226
+ | <code>He who gives to a Brahmana a good bed perfumed with fragrant scents, covered with an excellent sheet, and pillows, gets without any effort on his part a beautiful wife, belonging to a respectable family and of agreeable manners.</code> | <code>सुगन्धचित्रास्तरणोपधानं दद्यान्नरो यः शयनं द्विजाय। रूपान्वितां पक्षवती मनोज्ञां भार्यामयत्नोपगतां लभेत् सः।</code> |
227
+ | <code>By mid-1665, with the fortress at Purandar besieged and near capture, Shivaji was forced to come to terms with Jai Singh.<br></code> | <code>१६६५ तमवर्षस्य मध्यभागे यावत् पुरन्दरस्थस्य दुर्गस्य परिवेष्टनं कृत्वा, ग्रहणस्य समीपे, शिवाजी जयसिङ्घेन सह सन्धानं कर्तुं बाध्यः अभवत्।<br></code> |
228
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
229
+ ```json
230
+ {
231
+ "scale": 20.0,
232
+ "similarity_fct": "cos_sim"
233
+ }
234
+ ```
235
+
236
+ ### Training Hyperparameters
237
+ #### Non-Default Hyperparameters
238
+
239
+ - `eval_strategy`: steps
240
+ - `per_device_train_batch_size`: 4
241
+ - `per_device_eval_batch_size`: 4
242
+ - `num_train_epochs`: 15
243
+ - `multi_dataset_batch_sampler`: round_robin
244
+
245
+ #### All Hyperparameters
246
+ <details><summary>Click to expand</summary>
247
+
248
+ - `overwrite_output_dir`: False
249
+ - `do_predict`: False
250
+ - `eval_strategy`: steps
251
+ - `prediction_loss_only`: True
252
+ - `per_device_train_batch_size`: 4
253
+ - `per_device_eval_batch_size`: 4
254
+ - `per_gpu_train_batch_size`: None
255
+ - `per_gpu_eval_batch_size`: None
256
+ - `gradient_accumulation_steps`: 1
257
+ - `eval_accumulation_steps`: None
258
+ - `torch_empty_cache_steps`: None
259
+ - `learning_rate`: 5e-05
260
+ - `weight_decay`: 0.0
261
+ - `adam_beta1`: 0.9
262
+ - `adam_beta2`: 0.999
263
+ - `adam_epsilon`: 1e-08
264
+ - `max_grad_norm`: 1
265
+ - `num_train_epochs`: 15
266
+ - `max_steps`: -1
267
+ - `lr_scheduler_type`: linear
268
+ - `lr_scheduler_kwargs`: {}
269
+ - `warmup_ratio`: 0.0
270
+ - `warmup_steps`: 0
271
+ - `log_level`: passive
272
+ - `log_level_replica`: warning
273
+ - `log_on_each_node`: True
274
+ - `logging_nan_inf_filter`: True
275
+ - `save_safetensors`: True
276
+ - `save_on_each_node`: False
277
+ - `save_only_model`: False
278
+ - `restore_callback_states_from_checkpoint`: False
279
+ - `no_cuda`: False
280
+ - `use_cpu`: False
281
+ - `use_mps_device`: False
282
+ - `seed`: 42
283
+ - `data_seed`: None
284
+ - `jit_mode_eval`: False
285
+ - `use_ipex`: False
286
+ - `bf16`: False
287
+ - `fp16`: False
288
+ - `fp16_opt_level`: O1
289
+ - `half_precision_backend`: auto
290
+ - `bf16_full_eval`: False
291
+ - `fp16_full_eval`: False
292
+ - `tf32`: None
293
+ - `local_rank`: 0
294
+ - `ddp_backend`: None
295
+ - `tpu_num_cores`: None
296
+ - `tpu_metrics_debug`: False
297
+ - `debug`: []
298
+ - `dataloader_drop_last`: False
299
+ - `dataloader_num_workers`: 0
300
+ - `dataloader_prefetch_factor`: None
301
+ - `past_index`: -1
302
+ - `disable_tqdm`: False
303
+ - `remove_unused_columns`: True
304
+ - `label_names`: None
305
+ - `load_best_model_at_end`: False
306
+ - `ignore_data_skip`: False
307
+ - `fsdp`: []
308
+ - `fsdp_min_num_params`: 0
309
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
310
+ - `fsdp_transformer_layer_cls_to_wrap`: None
311
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
312
+ - `deepspeed`: None
313
+ - `label_smoothing_factor`: 0.0
314
+ - `optim`: adamw_torch
315
+ - `optim_args`: None
316
+ - `adafactor`: False
317
+ - `group_by_length`: False
318
+ - `length_column_name`: length
319
+ - `ddp_find_unused_parameters`: None
320
+ - `ddp_bucket_cap_mb`: None
321
+ - `ddp_broadcast_buffers`: False
322
+ - `dataloader_pin_memory`: True
323
+ - `dataloader_persistent_workers`: False
324
+ - `skip_memory_metrics`: True
325
+ - `use_legacy_prediction_loop`: False
326
+ - `push_to_hub`: False
327
+ - `resume_from_checkpoint`: None
328
+ - `hub_model_id`: None
329
+ - `hub_strategy`: every_save
330
+ - `hub_private_repo`: False
331
+ - `hub_always_push`: False
332
+ - `gradient_checkpointing`: False
333
+ - `gradient_checkpointing_kwargs`: None
334
+ - `include_inputs_for_metrics`: False
335
+ - `include_for_metrics`: []
336
+ - `eval_do_concat_batches`: True
337
+ - `fp16_backend`: auto
338
+ - `push_to_hub_model_id`: None
339
+ - `push_to_hub_organization`: None
340
+ - `mp_parameters`:
341
+ - `auto_find_batch_size`: False
342
+ - `full_determinism`: False
343
+ - `torchdynamo`: None
344
+ - `ray_scope`: last
345
+ - `ddp_timeout`: 1800
346
+ - `torch_compile`: False
347
+ - `torch_compile_backend`: None
348
+ - `torch_compile_mode`: None
349
+ - `dispatch_batches`: None
350
+ - `split_batches`: None
351
+ - `include_tokens_per_second`: False
352
+ - `include_num_input_tokens_seen`: False
353
+ - `neftune_noise_alpha`: None
354
+ - `optim_target_modules`: None
355
+ - `batch_eval_metrics`: False
356
+ - `eval_on_start`: False
357
+ - `use_liger_kernel`: False
358
+ - `eval_use_gather_object`: False
359
+ - `average_tokens_across_devices`: False
360
+ - `prompts`: None
361
+ - `batch_sampler`: batch_sampler
362
+ - `multi_dataset_batch_sampler`: round_robin
363
+
364
+ </details>
365
+
366
+ ### Training Logs
367
+ <details><summary>Click to expand</summary>
368
+
369
+ | Epoch | Step | Training Loss | eval-en-sa_mean_accuracy |
370
+ |:-------:|:------:|:-------------:|:------------------------:|
371
+ | 0.0310 | 500 | 0.4289 | - |
372
+ | 0.0620 | 1000 | 0.182 | - |
373
+ | 0.0931 | 1500 | 0.1405 | - |
374
+ | 0.1241 | 2000 | 0.1097 | - |
375
+ | 0.1551 | 2500 | 0.0911 | - |
376
+ | 0.1861 | 3000 | 0.0791 | - |
377
+ | 0.2171 | 3500 | 0.0725 | - |
378
+ | 0.2482 | 4000 | 0.067 | - |
379
+ | 0.2792 | 4500 | 0.0594 | - |
380
+ | 0.3102 | 5000 | 0.0629 | - |
381
+ | 0.3412 | 5500 | 0.0535 | - |
382
+ | 0.3723 | 6000 | 0.0512 | - |
383
+ | 0.4033 | 6500 | 0.0456 | - |
384
+ | 0.4343 | 7000 | 0.0462 | - |
385
+ | 0.4653 | 7500 | 0.043 | - |
386
+ | 0.4963 | 8000 | 0.0425 | - |
387
+ | 0.5274 | 8500 | 0.0412 | - |
388
+ | 0.5584 | 9000 | 0.0418 | - |
389
+ | 0.5894 | 9500 | 0.0415 | - |
390
+ | 0.6204 | 10000 | 0.0409 | - |
391
+ | 0.6514 | 10500 | 0.04 | - |
392
+ | 0.6825 | 11000 | 0.032 | - |
393
+ | 0.7135 | 11500 | 0.0323 | - |
394
+ | 0.7445 | 12000 | 0.0325 | - |
395
+ | 0.7755 | 12500 | 0.0355 | - |
396
+ | 0.8066 | 13000 | 0.0285 | - |
397
+ | 0.8376 | 13500 | 0.0281 | - |
398
+ | 0.8686 | 14000 | 0.0289 | - |
399
+ | 0.8996 | 14500 | 0.033 | - |
400
+ | 0.9306 | 15000 | 0.0336 | - |
401
+ | 0.9617 | 15500 | 0.0335 | - |
402
+ | 0.9927 | 16000 | 0.0278 | - |
403
+ | 1.0 | 16118 | - | 0.913 |
404
+ | 1.0237 | 16500 | 0.0312 | - |
405
+ | 1.0547 | 17000 | 0.0294 | - |
406
+ | 1.0857 | 17500 | 0.0288 | - |
407
+ | 1.1168 | 18000 | 0.0287 | - |
408
+ | 1.1478 | 18500 | 0.0245 | - |
409
+ | 1.1788 | 19000 | 0.0243 | - |
410
+ | 1.2098 | 19500 | 0.022 | - |
411
+ | 1.2408 | 20000 | 0.0266 | - |
412
+ | 1.2719 | 20500 | 0.0224 | - |
413
+ | 1.3029 | 21000 | 0.0283 | - |
414
+ | 1.3339 | 21500 | 0.02 | - |
415
+ | 1.3649 | 22000 | 0.0212 | - |
416
+ | 1.3960 | 22500 | 0.0197 | - |
417
+ | 1.4270 | 23000 | 0.0174 | - |
418
+ | 1.4580 | 23500 | 0.0179 | - |
419
+ | 1.4890 | 24000 | 0.0187 | - |
420
+ | 1.5200 | 24500 | 0.0191 | - |
421
+ | 1.5511 | 25000 | 0.0151 | - |
422
+ | 1.5821 | 25500 | 0.0161 | - |
423
+ | 1.6131 | 26000 | 0.0182 | - |
424
+ | 1.6441 | 26500 | 0.0155 | - |
425
+ | 1.6751 | 27000 | 0.013 | - |
426
+ | 1.7062 | 27500 | 0.0119 | - |
427
+ | 1.7372 | 28000 | 0.0119 | - |
428
+ | 1.7682 | 28500 | 0.0133 | - |
429
+ | 1.7992 | 29000 | 0.0113 | - |
430
+ | 1.8303 | 29500 | 0.011 | - |
431
+ | 1.8613 | 30000 | 0.0133 | - |
432
+ | 1.8923 | 30500 | 0.0114 | - |
433
+ | 1.9233 | 31000 | 0.0139 | - |
434
+ | 1.9543 | 31500 | 0.0131 | - |
435
+ | 1.9854 | 32000 | 0.0115 | - |
436
+ | 2.0 | 32236 | - | 0.9345 |
437
+ | 2.0164 | 32500 | 0.01 | - |
438
+ | 2.0474 | 33000 | 0.01 | - |
439
+ | 2.0784 | 33500 | 0.0091 | - |
440
+ | 2.1094 | 34000 | 0.0131 | - |
441
+ | 2.1405 | 34500 | 0.0096 | - |
442
+ | 2.1715 | 35000 | 0.0095 | - |
443
+ | 2.2025 | 35500 | 0.0103 | - |
444
+ | 2.2335 | 36000 | 0.0101 | - |
445
+ | 2.2645 | 36500 | 0.0102 | - |
446
+ | 2.2956 | 37000 | 0.0102 | - |
447
+ | 2.3266 | 37500 | 0.0085 | - |
448
+ | 2.3576 | 38000 | 0.0087 | - |
449
+ | 2.3886 | 38500 | 0.0103 | - |
450
+ | 2.4197 | 39000 | 0.0058 | - |
451
+ | 2.4507 | 39500 | 0.0086 | - |
452
+ | 2.4817 | 40000 | 0.0088 | - |
453
+ | 2.5127 | 40500 | 0.0088 | - |
454
+ | 2.5437 | 41000 | 0.007 | - |
455
+ | 2.5748 | 41500 | 0.0082 | - |
456
+ | 2.6058 | 42000 | 0.0069 | - |
457
+ | 2.6368 | 42500 | 0.0071 | - |
458
+ | 2.6678 | 43000 | 0.0058 | - |
459
+ | 2.6988 | 43500 | 0.0075 | - |
460
+ | 2.7299 | 44000 | 0.0064 | - |
461
+ | 2.7609 | 44500 | 0.0053 | - |
462
+ | 2.7919 | 45000 | 0.0055 | - |
463
+ | 2.8229 | 45500 | 0.0061 | - |
464
+ | 2.8540 | 46000 | 0.0059 | - |
465
+ | 2.8850 | 46500 | 0.0062 | - |
466
+ | 2.9160 | 47000 | 0.0046 | - |
467
+ | 2.9470 | 47500 | 0.0064 | - |
468
+ | 2.9780 | 48000 | 0.0053 | - |
469
+ | 3.0 | 48354 | - | 0.941 |
470
+ | 3.0091 | 48500 | 0.0048 | - |
471
+ | 3.0401 | 49000 | 0.0059 | - |
472
+ | 3.0711 | 49500 | 0.005 | - |
473
+ | 3.1021 | 50000 | 0.005 | 0.9415 |
474
+ | 3.1331 | 50500 | 0.0046 | - |
475
+ | 3.1642 | 51000 | 0.005 | - |
476
+ | 3.1952 | 51500 | 0.0051 | - |
477
+ | 3.2262 | 52000 | 0.0041 | - |
478
+ | 3.2572 | 52500 | 0.0052 | - |
479
+ | 3.2882 | 53000 | 0.0052 | - |
480
+ | 3.3193 | 53500 | 0.0053 | - |
481
+ | 3.3503 | 54000 | 0.0041 | - |
482
+ | 3.3813 | 54500 | 0.0042 | - |
483
+ | 3.4123 | 55000 | 0.0026 | - |
484
+ | 3.4434 | 55500 | 0.0045 | - |
485
+ | 3.4744 | 56000 | 0.0045 | - |
486
+ | 3.5054 | 56500 | 0.0054 | - |
487
+ | 3.5364 | 57000 | 0.0055 | - |
488
+ | 3.5674 | 57500 | 0.0046 | - |
489
+ | 3.5985 | 58000 | 0.0045 | - |
490
+ | 3.6295 | 58500 | 0.0041 | - |
491
+ | 3.6605 | 59000 | 0.0037 | - |
492
+ | 3.6915 | 59500 | 0.003 | - |
493
+ | 3.7225 | 60000 | 0.0039 | - |
494
+ | 3.7536 | 60500 | 0.0027 | - |
495
+ | 3.7846 | 61000 | 0.0041 | - |
496
+ | 3.8156 | 61500 | 0.003 | - |
497
+ | 3.8466 | 62000 | 0.0027 | - |
498
+ | 3.8777 | 62500 | 0.0039 | - |
499
+ | 3.9087 | 63000 | 0.0038 | - |
500
+ | 3.9397 | 63500 | 0.0029 | - |
501
+ | 3.9707 | 64000 | 0.0037 | - |
502
+ | 4.0 | 64472 | - | 0.9365 |
503
+ | 4.0017 | 64500 | 0.0023 | - |
504
+ | 4.0328 | 65000 | 0.0034 | - |
505
+ | 4.0638 | 65500 | 0.0033 | - |
506
+ | 4.0948 | 66000 | 0.0033 | - |
507
+ | 4.1258 | 66500 | 0.004 | - |
508
+ | 4.1568 | 67000 | 0.0026 | - |
509
+ | 4.1879 | 67500 | 0.0026 | - |
510
+ | 4.2189 | 68000 | 0.0025 | - |
511
+ | 4.2499 | 68500 | 0.0037 | - |
512
+ | 4.2809 | 69000 | 0.0041 | - |
513
+ | 4.3119 | 69500 | 0.0031 | - |
514
+ | 4.3430 | 70000 | 0.0025 | - |
515
+ | 4.3740 | 70500 | 0.0025 | - |
516
+ | 4.4050 | 71000 | 0.0022 | - |
517
+ | 4.4360 | 71500 | 0.0016 | - |
518
+ | 4.4671 | 72000 | 0.003 | - |
519
+ | 4.4981 | 72500 | 0.0029 | - |
520
+ | 4.5291 | 73000 | 0.003 | - |
521
+ | 4.5601 | 73500 | 0.0025 | - |
522
+ | 4.5911 | 74000 | 0.0027 | - |
523
+ | 4.6222 | 74500 | 0.0028 | - |
524
+ | 4.6532 | 75000 | 0.003 | - |
525
+ | 4.6842 | 75500 | 0.002 | - |
526
+ | 4.7152 | 76000 | 0.0028 | - |
527
+ | 4.7462 | 76500 | 0.0016 | - |
528
+ | 4.7773 | 77000 | 0.0022 | - |
529
+ | 4.8083 | 77500 | 0.0019 | - |
530
+ | 4.8393 | 78000 | 0.0019 | - |
531
+ | 4.8703 | 78500 | 0.0026 | - |
532
+ | 4.9014 | 79000 | 0.0023 | - |
533
+ | 4.9324 | 79500 | 0.0016 | - |
534
+ | 4.9634 | 80000 | 0.0019 | - |
535
+ | 4.9944 | 80500 | 0.0018 | - |
536
+ | 5.0 | 80590 | - | 0.937 |
537
+ | 5.0254 | 81000 | 0.0028 | - |
538
+ | 5.0565 | 81500 | 0.0019 | - |
539
+ | 5.0875 | 82000 | 0.0024 | - |
540
+ | 5.1185 | 82500 | 0.0016 | - |
541
+ | 5.1495 | 83000 | 0.0015 | - |
542
+ | 5.1805 | 83500 | 0.0017 | - |
543
+ | 5.2116 | 84000 | 0.0016 | - |
544
+ | 5.2426 | 84500 | 0.0026 | - |
545
+ | 5.2736 | 85000 | 0.0029 | - |
546
+ | 5.3046 | 85500 | 0.0027 | - |
547
+ | 5.3356 | 86000 | 0.002 | - |
548
+ | 5.3667 | 86500 | 0.002 | - |
549
+ | 5.3977 | 87000 | 0.0021 | - |
550
+ | 5.4287 | 87500 | 0.0011 | - |
551
+ | 5.4597 | 88000 | 0.0016 | - |
552
+ | 5.4908 | 88500 | 0.0019 | - |
553
+ | 5.5218 | 89000 | 0.0027 | - |
554
+ | 5.5528 | 89500 | 0.0012 | - |
555
+ | 5.5838 | 90000 | 0.0012 | - |
556
+ | 5.6148 | 90500 | 0.0016 | - |
557
+ | 5.6459 | 91000 | 0.0019 | - |
558
+ | 5.6769 | 91500 | 0.0016 | - |
559
+ | 5.7079 | 92000 | 0.0027 | - |
560
+ | 5.7389 | 92500 | 0.0013 | - |
561
+ | 5.7699 | 93000 | 0.0013 | - |
562
+ | 5.8010 | 93500 | 0.0015 | - |
563
+ | 5.8320 | 94000 | 0.0016 | - |
564
+ | 5.8630 | 94500 | 0.002 | - |
565
+ | 5.8940 | 95000 | 0.001 | - |
566
+ | 5.9251 | 95500 | 0.0014 | - |
567
+ | 5.9561 | 96000 | 0.0021 | - |
568
+ | 5.9871 | 96500 | 0.0022 | - |
569
+ | 6.0 | 96708 | - | 0.933 |
570
+ | 6.0181 | 97000 | 0.0016 | - |
571
+ | 6.0491 | 97500 | 0.0015 | - |
572
+ | 6.0802 | 98000 | 0.0011 | - |
573
+ | 6.1112 | 98500 | 0.0016 | - |
574
+ | 6.1422 | 99000 | 0.001 | - |
575
+ | 6.1732 | 99500 | 0.0013 | - |
576
+ | 6.2042 | 100000 | 0.0015 | 0.9365 |
577
+ | 6.2353 | 100500 | 0.0017 | - |
578
+ | 6.2663 | 101000 | 0.0015 | - |
579
+ | 6.2973 | 101500 | 0.0016 | - |
580
+ | 6.3283 | 102000 | 0.001 | - |
581
+ | 6.3593 | 102500 | 0.0013 | - |
582
+ | 6.3904 | 103000 | 0.0013 | - |
583
+ | 6.4214 | 103500 | 0.0011 | - |
584
+ | 6.4524 | 104000 | 0.0007 | - |
585
+ | 6.4834 | 104500 | 0.0013 | - |
586
+ | 6.5145 | 105000 | 0.0011 | - |
587
+ | 6.5455 | 105500 | 0.0011 | - |
588
+ | 6.5765 | 106000 | 0.0015 | - |
589
+ | 6.6075 | 106500 | 0.002 | - |
590
+ | 6.6385 | 107000 | 0.0011 | - |
591
+ | 6.6696 | 107500 | 0.0013 | - |
592
+ | 6.7006 | 108000 | 0.0017 | - |
593
+ | 6.7316 | 108500 | 0.0008 | - |
594
+ | 6.7626 | 109000 | 0.0011 | - |
595
+ | 6.7936 | 109500 | 0.0008 | - |
596
+ | 6.8247 | 110000 | 0.0009 | - |
597
+ | 6.8557 | 110500 | 0.0014 | - |
598
+ | 6.8867 | 111000 | 0.0014 | - |
599
+ | 6.9177 | 111500 | 0.0014 | - |
600
+ | 6.9488 | 112000 | 0.0014 | - |
601
+ | 6.9798 | 112500 | 0.0013 | - |
602
+ | 7.0 | 112826 | - | 0.9390 |
603
+ | 7.0108 | 113000 | 0.0011 | - |
604
+ | 7.0418 | 113500 | 0.0013 | - |
605
+ | 7.0728 | 114000 | 0.0012 | - |
606
+ | 7.1039 | 114500 | 0.001 | - |
607
+ | 7.1349 | 115000 | 0.0016 | - |
608
+ | 7.1659 | 115500 | 0.0009 | - |
609
+ | 7.1969 | 116000 | 0.0009 | - |
610
+ | 7.2279 | 116500 | 0.0007 | - |
611
+ | 7.2590 | 117000 | 0.0008 | - |
612
+ | 7.2900 | 117500 | 0.0014 | - |
613
+ | 7.3210 | 118000 | 0.0012 | - |
614
+ | 7.3520 | 118500 | 0.0007 | - |
615
+ | 7.3831 | 119000 | 0.001 | - |
616
+ | 7.4141 | 119500 | 0.001 | - |
617
+ | 7.4451 | 120000 | 0.0007 | - |
618
+ | 7.4761 | 120500 | 0.0008 | - |
619
+ | 7.5071 | 121000 | 0.0009 | - |
620
+ | 7.5382 | 121500 | 0.0009 | - |
621
+ | 7.5692 | 122000 | 0.001 | - |
622
+ | 7.6002 | 122500 | 0.0009 | - |
623
+ | 7.6312 | 123000 | 0.0007 | - |
624
+ | 7.6622 | 123500 | 0.0009 | - |
625
+ | 7.6933 | 124000 | 0.0007 | - |
626
+ | 7.7243 | 124500 | 0.0012 | - |
627
+ | 7.7553 | 125000 | 0.001 | - |
628
+ | 7.7863 | 125500 | 0.0005 | - |
629
+ | 7.8173 | 126000 | 0.0005 | - |
630
+ | 7.8484 | 126500 | 0.0008 | - |
631
+ | 7.8794 | 127000 | 0.0014 | - |
632
+ | 7.9104 | 127500 | 0.0014 | - |
633
+ | 7.9414 | 128000 | 0.0009 | - |
634
+ | 7.9725 | 128500 | 0.0008 | - |
635
+ | 8.0 | 128944 | - | 0.94 |
636
+ | 8.0035 | 129000 | 0.0013 | - |
637
+ | 8.0345 | 129500 | 0.0007 | - |
638
+ | 8.0655 | 130000 | 0.0007 | - |
639
+ | 8.0965 | 130500 | 0.0008 | - |
640
+ | 8.1276 | 131000 | 0.0009 | - |
641
+ | 8.1586 | 131500 | 0.0009 | - |
642
+ | 8.1896 | 132000 | 0.0007 | - |
643
+ | 8.2206 | 132500 | 0.0008 | - |
644
+ | 8.2516 | 133000 | 0.0008 | - |
645
+ | 8.2827 | 133500 | 0.0006 | - |
646
+ | 8.3137 | 134000 | 0.0008 | - |
647
+ | 8.3447 | 134500 | 0.001 | - |
648
+ | 8.3757 | 135000 | 0.0006 | - |
649
+ | 8.4068 | 135500 | 0.0007 | - |
650
+ | 8.4378 | 136000 | 0.0007 | - |
651
+ | 8.4688 | 136500 | 0.0009 | - |
652
+ | 8.4998 | 137000 | 0.0008 | - |
653
+ | 8.5308 | 137500 | 0.0006 | - |
654
+ | 8.5619 | 138000 | 0.0008 | - |
655
+ | 8.5929 | 138500 | 0.0007 | - |
656
+ | 8.6239 | 139000 | 0.0008 | - |
657
+ | 8.6549 | 139500 | 0.0006 | - |
658
+ | 8.6859 | 140000 | 0.0005 | - |
659
+ | 8.7170 | 140500 | 0.0006 | - |
660
+ | 8.7480 | 141000 | 0.0006 | - |
661
+ | 8.7790 | 141500 | 0.0006 | - |
662
+ | 8.8100 | 142000 | 0.0005 | - |
663
+ | 8.8410 | 142500 | 0.0006 | - |
664
+ | 8.8721 | 143000 | 0.0005 | - |
665
+ | 8.9031 | 143500 | 0.0006 | - |
666
+ | 8.9341 | 144000 | 0.0009 | - |
667
+ | 8.9651 | 144500 | 0.0007 | - |
668
+ | 8.9962 | 145000 | 0.0007 | - |
669
+ | 9.0 | 145062 | - | 0.938 |
670
+ | 9.0272 | 145500 | 0.0007 | - |
671
+ | 9.0582 | 146000 | 0.0007 | - |
672
+ | 9.0892 | 146500 | 0.0007 | - |
673
+ | 9.1202 | 147000 | 0.0007 | - |
674
+ | 9.1513 | 147500 | 0.0005 | - |
675
+ | 9.1823 | 148000 | 0.0005 | - |
676
+ | 9.2133 | 148500 | 0.0005 | - |
677
+ | 9.2443 | 149000 | 0.0007 | - |
678
+ | 9.2753 | 149500 | 0.0006 | - |
679
+ | 9.3064 | 150000 | 0.0005 | 0.938 |
680
+ | 9.3374 | 150500 | 0.0005 | - |
681
+ | 9.3684 | 151000 | 0.0004 | - |
682
+ | 9.3994 | 151500 | 0.0007 | - |
683
+ | 9.4305 | 152000 | 0.0006 | - |
684
+ | 9.4615 | 152500 | 0.0006 | - |
685
+ | 9.4925 | 153000 | 0.0012 | - |
686
+ | 9.5235 | 153500 | 0.0015 | - |
687
+ | 9.5545 | 154000 | 0.0006 | - |
688
+ | 9.5856 | 154500 | 0.0004 | - |
689
+ | 9.6166 | 155000 | 0.0004 | - |
690
+ | 9.6476 | 155500 | 0.0007 | - |
691
+ | 9.6786 | 156000 | 0.0005 | - |
692
+ | 9.7096 | 156500 | 0.0006 | - |
693
+ | 9.7407 | 157000 | 0.0004 | - |
694
+ | 9.7717 | 157500 | 0.0004 | - |
695
+ | 9.8027 | 158000 | 0.0006 | - |
696
+ | 9.8337 | 158500 | 0.0004 | - |
697
+ | 9.8647 | 159000 | 0.0005 | - |
698
+ | 9.8958 | 159500 | 0.0005 | - |
699
+ | 9.9268 | 160000 | 0.0004 | - |
700
+ | 9.9578 | 160500 | 0.0007 | - |
701
+ | 9.9888 | 161000 | 0.0008 | - |
702
+ | 10.0 | 161180 | - | 0.9405 |
703
+ | 10.0199 | 161500 | 0.0009 | - |
704
+ | 10.0509 | 162000 | 0.0007 | - |
705
+ | 10.0819 | 162500 | 0.0007 | - |
706
+ | 10.1129 | 163000 | 0.0007 | - |
707
+ | 10.1439 | 163500 | 0.0005 | - |
708
+ | 10.1750 | 164000 | 0.0005 | - |
709
+ | 10.2060 | 164500 | 0.0004 | - |
710
+ | 10.2370 | 165000 | 0.0006 | - |
711
+ | 10.2680 | 165500 | 0.0006 | - |
712
+ | 10.2990 | 166000 | 0.0005 | - |
713
+ | 10.3301 | 166500 | 0.0005 | - |
714
+ | 10.3611 | 167000 | 0.0006 | - |
715
+ | 10.3921 | 167500 | 0.0006 | - |
716
+ | 10.4231 | 168000 | 0.0003 | - |
717
+ | 10.4542 | 168500 | 0.0005 | - |
718
+ | 10.4852 | 169000 | 0.001 | - |
719
+ | 10.5162 | 169500 | 0.0007 | - |
720
+ | 10.5472 | 170000 | 0.0003 | - |
721
+ | 10.5782 | 170500 | 0.0005 | - |
722
+ | 10.6093 | 171000 | 0.0003 | - |
723
+ | 10.6403 | 171500 | 0.0004 | - |
724
+ | 10.6713 | 172000 | 0.0006 | - |
725
+ | 10.7023 | 172500 | 0.0006 | - |
726
+ | 10.7333 | 173000 | 0.0005 | - |
727
+ | 10.7644 | 173500 | 0.0004 | - |
728
+ | 10.7954 | 174000 | 0.0003 | - |
729
+ | 10.8264 | 174500 | 0.0007 | - |
730
+ | 10.8574 | 175000 | 0.0005 | - |
731
+ | 10.8884 | 175500 | 0.0003 | - |
732
+ | 10.9195 | 176000 | 0.0006 | - |
733
+ | 10.9505 | 176500 | 0.001 | - |
734
+ | 10.9815 | 177000 | 0.0007 | - |
735
+ | 11.0 | 177298 | - | 0.9345 |
736
+ | 11.0125 | 177500 | 0.0003 | - |
737
+ | 11.0436 | 178000 | 0.0003 | - |
738
+ | 11.0746 | 178500 | 0.0005 | - |
739
+ | 11.1056 | 179000 | 0.0005 | - |
740
+ | 11.1366 | 179500 | 0.0007 | - |
741
+ | 11.1676 | 180000 | 0.0008 | - |
742
+ | 11.1987 | 180500 | 0.0004 | - |
743
+ | 11.2297 | 181000 | 0.0006 | - |
744
+ | 11.2607 | 181500 | 0.0006 | - |
745
+ | 11.2917 | 182000 | 0.0009 | - |
746
+ | 11.3227 | 182500 | 0.0005 | - |
747
+ | 11.3538 | 183000 | 0.0004 | - |
748
+ | 11.3848 | 183500 | 0.0004 | - |
749
+ | 11.4158 | 184000 | 0.0005 | - |
750
+ | 11.4468 | 184500 | 0.0003 | - |
751
+ | 11.4779 | 185000 | 0.0002 | - |
752
+ | 11.5089 | 185500 | 0.0003 | - |
753
+ | 11.5399 | 186000 | 0.0007 | - |
754
+ | 11.5709 | 186500 | 0.0003 | - |
755
+ | 11.6019 | 187000 | 0.0003 | - |
756
+ | 11.6330 | 187500 | 0.0004 | - |
757
+ | 11.6640 | 188000 | 0.0007 | - |
758
+ | 11.6950 | 188500 | 0.0003 | - |
759
+ | 11.7260 | 189000 | 0.0003 | - |
760
+ | 11.7570 | 189500 | 0.0004 | - |
761
+ | 11.7881 | 190000 | 0.0004 | - |
762
+ | 11.8191 | 190500 | 0.0003 | - |
763
+ | 11.8501 | 191000 | 0.0003 | - |
764
+ | 11.8811 | 191500 | 0.0003 | - |
765
+ | 11.9121 | 192000 | 0.0002 | - |
766
+ | 11.9432 | 192500 | 0.0008 | - |
767
+ | 11.9742 | 193000 | 0.0004 | - |
768
+ | 12.0 | 193416 | - | 0.944 |
769
+ | 12.0052 | 193500 | 0.0005 | - |
770
+ | 12.0362 | 194000 | 0.0002 | - |
771
+ | 12.0673 | 194500 | 0.0003 | - |
772
+ | 12.0983 | 195000 | 0.0004 | - |
773
+ | 12.1293 | 195500 | 0.0005 | - |
774
+ | 12.1603 | 196000 | 0.0004 | - |
775
+ | 12.1913 | 196500 | 0.0002 | - |
776
+ | 12.2224 | 197000 | 0.0002 | - |
777
+ | 12.2534 | 197500 | 0.0003 | - |
778
+ | 12.2844 | 198000 | 0.0003 | - |
779
+ | 12.3154 | 198500 | 0.0005 | - |
780
+ | 12.3464 | 199000 | 0.0004 | - |
781
+ | 12.3775 | 199500 | 0.0004 | - |
782
+ | 12.4085 | 200000 | 0.0003 | 0.9435 |
783
+ | 12.4395 | 200500 | 0.0003 | - |
784
+ | 12.4705 | 201000 | 0.0004 | - |
785
+ | 12.5016 | 201500 | 0.0009 | - |
786
+ | 12.5326 | 202000 | 0.0005 | - |
787
+ | 12.5636 | 202500 | 0.0003 | - |
788
+ | 12.5946 | 203000 | 0.0003 | - |
789
+ | 12.6256 | 203500 | 0.0002 | - |
790
+ | 12.6567 | 204000 | 0.0003 | - |
791
+ | 12.6877 | 204500 | 0.0002 | - |
792
+ | 12.7187 | 205000 | 0.0005 | - |
793
+ | 12.7497 | 205500 | 0.0003 | - |
794
+ | 12.7807 | 206000 | 0.0004 | - |
795
+ | 12.8118 | 206500 | 0.0003 | - |
796
+ | 12.8428 | 207000 | 0.0003 | - |
797
+ | 12.8738 | 207500 | 0.0003 | - |
798
+ | 12.9048 | 208000 | 0.0003 | - |
799
+ | 12.9358 | 208500 | 0.0006 | - |
800
+ | 12.9669 | 209000 | 0.0004 | - |
801
+ | 12.9979 | 209500 | 0.0004 | - |
802
+ | 13.0 | 209534 | - | 0.9455 |
803
+
804
+ </details>
805
+
806
+ ### Framework Versions
807
+ - Python: 3.10.17
808
+ - Sentence Transformers: 4.1.0
809
+ - Transformers: 4.46.3
810
+ - PyTorch: 2.2.0+cu121
811
+ - Accelerate: 1.1.1
812
+ - Datasets: 2.18.0
813
+ - Tokenizers: 0.20.3
814
+
815
+ ## Citation
816
+
817
+ ### BibTeX
818
+
819
+ #### Sentence Transformers
820
+ ```bibtex
821
+ @inproceedings{reimers-2019-sentence-bert,
822
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
823
+ author = "Reimers, Nils and Gurevych, Iryna",
824
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
825
+ month = "11",
826
+ year = "2019",
827
+ publisher = "Association for Computational Linguistics",
828
+ url = "https://arxiv.org/abs/1908.10084",
829
+ }
830
+ ```
831
+
832
+ #### MultipleNegativesRankingLoss
833
+ ```bibtex
834
+ @misc{henderson2017efficient,
835
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
836
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
837
+ year={2017},
838
+ eprint={1705.00652},
839
+ archivePrefix={arXiv},
840
+ primaryClass={cs.CL}
841
+ }
842
+ ```
843
+
844
+ <!--
845
+ ## Glossary
846
+
847
+ *Clearly define terms in order to be accessible across audiences.*
848
+ -->
849
+
850
+ <!--
851
+ ## Model Card Authors
852
+
853
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
854
+ -->
855
+
856
+ <!--
857
+ ## Model Card Contact
858
+
859
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
860
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/LaBSE",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.46.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
eval/translation_evaluation_eval-en-sa_results.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,src2trg,trg2src
2
+ 1.0,16118,0.914,0.912
3
+ 2.0,32236,0.942,0.927
4
+ 3.0,48354,0.944,0.938
5
+ 4.0,64472,0.941,0.932
6
+ 5.0,80590,0.943,0.931
7
+ 6.0,96708,0.936,0.93
8
+ 7.0,112826,0.942,0.936
9
+ 8.0,128944,0.948,0.932
10
+ 9.0,145062,0.943,0.933
11
+ 10.0,161180,0.947,0.934
12
+ 11.0,177298,0.941,0.928
13
+ 12.0,193416,0.946,0.942
14
+ 13.0,209534,0.944,0.947
15
+ 14.0,225652,0.947,0.938
16
+ 15.0,241770,0.942,0.943
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86549e8a22ceea591a5d8dcaa03067c96b047c96cb9b7bfa8c0e55d9869c439
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_Normalize",
24
+ "type": "sentence_transformers.models.Normalize"
25
+ }
26
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edba4e57ec22a2a74bbdb601d3f908e4699c34f8386d52ed055e6fe6bd2b51ac
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff