ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue_ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4085
- Accuracy: 0.8608
- Precision: 0.8485
- Recall: 0.8791
- F1: 0.8626
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.4121 | 1.0 | 714 | 0.4943 | 0.8372 | 0.8100 | 0.8725 | 0.8364 |
0.3046 | 2.0 | 1428 | 0.4012 | 0.8548 | 0.8457 | 0.8677 | 0.8549 |
0.2233 | 3.0 | 2142 | 0.4085 | 0.8608 | 0.8485 | 0.8791 | 0.8626 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 2
Model tree for BigBigBe/ynat-model
Base model
monologg/koelectra-base-v3-discriminator