rotating-head-gp-norm-gpt2-medium-wikitext

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2113
  • Accuracy: 0.4180
  • Perplexity: 24.8108
  • Bleu: 0.1307

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Perplexity Bleu
5.9057 0.2806 500 5.7484 0.2234 313.6789 0.0477
4.8613 0.5612 1000 4.7455 0.2807 115.0632 0.0711
4.2976 0.8418 1500 4.2220 0.3187 68.1694 0.0837
3.9568 1.1223 2000 3.9271 0.3461 50.7582 0.0934
3.7919 1.4029 2500 3.7617 0.3626 43.0211 0.0942
3.692 1.6835 3000 3.6573 0.3725 38.7561 0.1052
3.5939 1.9641 3500 3.5628 0.3818 35.2616 0.1094
3.483 2.2447 4000 3.4932 0.3879 32.8924 0.1140
3.4251 2.5253 4500 3.4391 0.3933 31.1583 0.1204
3.3876 2.8058 5000 3.3855 0.3991 29.5323 0.1227
3.2719 3.0864 5500 3.3499 0.4020 28.5004 0.1246
3.2612 3.3670 6000 3.3160 0.4062 27.5488 0.1283
3.2373 3.6476 6500 3.2848 0.4095 26.7034 0.1288
3.2086 3.9282 7000 3.2598 0.4118 26.0453 0.1297
3.1402 4.2088 7500 3.2398 0.4146 25.5281 0.1344
3.1002 4.4893 8000 3.2246 0.4162 25.1447 0.1317
3.1099 4.7699 8500 3.2113 0.4180 24.8108 0.1307

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
355M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support