rotating-head-lr-norm-gpt2-medium-wikitext

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2154
  • Accuracy: 0.4186
  • Perplexity: 24.9126
  • Bleu: 0.1314

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Perplexity Bleu
5.9061 0.2806 500 5.7498 0.2230 314.1125 0.0496
4.8622 0.5612 1000 4.7414 0.2810 114.5910 0.0705
4.3006 0.8418 1500 4.2267 0.3182 68.4878 0.0834
3.9714 1.1223 2000 3.9429 0.3439 51.5654 0.0924
3.7835 1.4029 2500 3.7523 0.3629 42.6192 0.0969
3.6732 1.6835 3000 3.6293 0.3750 37.6861 0.1067
3.5764 1.9641 3500 3.5353 0.3848 34.3055 0.1124
3.4733 2.2447 4000 3.4822 0.3899 32.5321 0.1183
3.4163 2.5253 4500 3.4356 0.3946 31.0488 0.1253
3.3818 2.8058 5000 3.3806 0.4006 29.3886 0.1215
3.2827 3.0864 5500 3.3539 0.4028 28.6152 0.1308
3.2712 3.3670 6000 3.3233 0.4067 27.7517 0.1289
3.247 3.6476 6500 3.2908 0.4098 26.8652 0.1304
3.2203 3.9282 7000 3.2657 0.4126 26.1980 0.1278
3.1558 4.2088 7500 3.2440 0.4152 25.6357 0.1319
3.1152 4.4893 8000 3.2283 0.4169 25.2358 0.1301
3.1228 4.7699 8500 3.2154 0.4186 24.9126 0.1314

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
355M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support