license: apache-2.0
tags:
- frozen-embeddings
- research
- toy
- transformer
- MoE
- multilingual
- conceptual-demo
model-index:
- name: max_bvv_moe
results:
- task:
type: mmlu
metrics:
- type: mmlu
value: 22.4
name: Average MMLU (RU+ZH MoE)
Bochkov/max_bvv_moe
Research demo: Multilingual Frozen-Embedding Mixture-of-Experts (MoE) Transformer (RU+ZH)
Model size: 0.8B parameters
MoE fusion: Merges two independently-trained LMs (max_bvv_ru
, max_bvv_zh
) via shared, frozen, Unicode-derived token embeddings.
π Model description
- First demonstration of practical MoE fusion for language models via shared, frozen, non-semantic glyph/visual-based token embeddings.
- Each expert trained separately with the same fixed embeddings, then seamlessly fused β no retraining of embeddings or catastrophic forgetting.
This is a research model illustrating a new family of fusable, modular LMs.
πΉ Evaluation
- Avg. MMLU: 22.37%
- SQuAD: 18.40%
- ARC-e: 21.39%
- BLEU (en-ru): 5.02%
- BLEU (en-zh): 1.34%
Metrics are lower than SOTA β intended for research and concept demonstration, not state-of-the-art benchmarks!
π© Why is this important? This model shows:
Frozen, visual/Unicode-based embeddings allow seamless fusion of LMs in MoE style. No performance drop from MoE fusion. All semantics are learned above the embedding layer.
β οΈ Limitations Research use only. Trained on a small, non-exhaustive Russian + Chinese subset. Quality, robustness, and reasoning are much lower than SOTA models. SFT was only lightly applied; not intended for real world use.
π§βπ¬ Citation & Concept
If you use this model or the underlying concepts in your research, please cite our work:
@misc{bochkov2025emergentsemanticstokenembeddings,
title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations},
author={A. Bochkov},
year={2025},
eprint={2507.04886},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2507.04886},
}
@misc{bochkov2025growingtransformersmodularcomposition,
title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate},
author={A. Bochkov},
year={2025},
eprint={2507.07129},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2507.07129},
}
This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β a step toward modular, fusable, multilingual LMs.
π Related Models Bochkov/max_bvv_ru Bochkov/max_bvv_zh
π§ͺ Example
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained('Bochkov/max_bvv_moe', trust_remote_code=True).to('cuda')
tokenizer = AutoTokenizer.from_pretrained('Bochkov/max_bvv_moe', trust_remote_code=True)
inputs = tokenizer.encode("Example sentence in Russian or Chinese", return_tensors="pt").to('cuda')
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.8, top_k=50, top_p=0.95, do_sample=True)
print(tokenizer.decode(outputs[0].tolist()))