Bochkov/max_bvv_zh

Research demo: Chinese Causal Language Model with Frozen, Visual/Unicode Token Embeddings

Model size: 0.4B parameters
Tokenizer: Custom, Unicode-based; compatible with max_bvv_ru and max_bvv_moe
Goal: Show viability of frozen, non-semantic embeddings for LLMs (Chinese variant)


πŸ“ Model description

  • Frozen token embeddings derived from glyph/visual/Unicode statistics β€” not trained on text.
  • All transformer & output layers are trained; embeddings remain fixed.
  • Enables straightforward fusion with other models sharing these embeddings.

This is a proof-of-concept checkpoint. Performance is limited by training data and model size.


🏹 Evaluation

  • Avg. MMLU: 24.72%
  • SQuAD: 17.66%
  • ARC-e: 21.93%
  • BLEU (en-zh): 2.36%

Metrics are low because this model is for research and demo only.


⚠️ Limitations Research use only. Trained on a small, non-exhaustive Chinese subse subset. Quality, robustness, and reasoning are much lower than SOTA models. SFT was only lightly applied; not intended for real world use.

πŸ§‘β€πŸ”¬ Citation & Concept

If you use this model or the underlying concepts in your research, please cite our work:

@misc{bochkov2025emergentsemanticstokenembeddings,
      title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.04886},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.04886}, 
}

@misc{bochkov2025growingtransformersmodularcomposition,
      title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.07129},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.07129}, 
}

This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β€” a step toward modular, fusable, multilingual LMs.


πŸ”₯ Example

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained('Bochkov/max_bvv_zh', trust_remote_code=True).to('cuda')
tokenizer = AutoTokenizer.from_pretrained('Bochkov/max_bvv_zh', trust_remote_code=True)

inputs = tokenizer.encode("δ½ ε₯½δΈ–η•ŒοΌ", return_tensors="pt").to('cuda')
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.8, top_k=50, top_p=0.95, do_sample=True)
print(tokenizer.decode(outputs[0].tolist()))
Downloads last month
19
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including Bochkov/max_bvv_zh