nemo_bvv_zh

This is nemo_bvv_zh, a Chinese language GPT-style model trained with fully precomputed and frozen token embeddings using the Mistral/Nemo tokenizer (visual appearance-based). Specifically designed to demonstrate the compatibility of SOTA tokenizers in the fixed-embedding paradigm.

Model Details

  • Parameters: ~400M
  • Vocabulary: 131072 tokens (Mistral Nemo, precomputed embeddings)
  • Frozen Embeddings: Yes (not fine-tuned or trained)
  • Architecture: 12 layers, 12-head, hidden size 1024
  • Corpus: Small-scale, 10% SFT
  • Purpose: Research, foundation for MoE fusion

Performance

  • MMLU (average): 6.62%
  • ARC-e: 23.53%
  • ARC-c: 24.48%
  • Commonsense-QA: 19.27%
  • SQUAD: 6.05%
  • BLEU [en-zh]: 0.87% / [zh-en]: 4.05%

Limitations

  • Trained on a tiny research corpus for demonstration only.
  • Accuracy is far below large-scale production models.
  • Not suitable for commercial or mission-critical tasks.
  • No safety or fairness tuning.

πŸ§‘β€πŸ”¬ Citation & Concept

If you use this model or the underlying concepts in your research, please cite our work:

@misc{bochkov2025emergentsemanticstokenembeddings,
      title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.04886},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.04886}, 
}

@misc{bochkov2025growingtransformersmodularcomposition,
      title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.07129},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.07129}, 
}

This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β€” a step toward modular, fusable, multilingual LMs.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained('Bochkov/nemo_bvv_zh', trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('Bochkov/nemo_bvv_zh', trust_remote_code=True).to('cuda')
inputs = tokenizer("δ½ ε₯½οΌŒδΈ–η•ŒοΌ ", return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month
13
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including Bochkov/nemo_bvv_zh