pro_bvv_zh: 200M param frozen-embedding EN-ZH LM

Description

200M parameter EN/ZH language model trained on mixed EN/ZH corpus using frozen, visually-motivated token embeddings (Unicode-based). Intended for demonstration of cross-lingual learning and generalization capability.

Training details

  • EN-ZH corpus, ~9B tokens.
  • 10% SFT (EN and ZH QA/code/QA datasets).
  • Frozen embeddings, no adaptation during training.

Evaluation (SELECTED):

Task pro_bvv_zh
MMLU 17.96% Β± 0.25%
ARC-e 21.74% Β± 1.10%
ARC-c 22.24% Β± 1.14%
C-SENSE 18.51% Β± 0.76%
SQUAD 5.59% Β± 0.76%
BLEU [en-ru] 2.82% Β± 0.32%
BLEU [en-zh] 1.32% Β± 0.31%
BLEU [zh-en] 4.65% Β± 0.28%

⚠️ Limitations Research use only. Trained on a small subset. Quality, robustness, and reasoning are much lower than SOTA models. SFT was only lightly applied; not intended for real world use.

πŸ§‘β€πŸ”¬ Citation & Concept

If you use this model or the underlying concepts in your research, please cite our work:

@misc{bochkov2025emergentsemanticstokenembeddings,
      title={Emergent Semantics Beyond Token Embeddings: Transformer LMs with Frozen Visual Unicode Representations}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.04886},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2507.04886}, 
}

@misc{bochkov2025growingtransformersmodularcomposition,
      title={Growing Transformers: Modular Composition and Layer-wise Expansion on a Frozen Substrate}, 
      author={A. Bochkov},
      year={2025},
      eprint={2507.07129},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2507.07129}, 
}

This work demonstrates that transformer blocks, not token embeddings, carry the semantic burden in LLMs β€” a step toward modular, fusable, multilingual LMs.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained('Bochkov/pro_bvv_zh')
model = AutoModelForCausalLM.from_pretrained('Bochkov/pro_bvv_zh', trust_remote_code=True).to('cuda')
inputs = torch.tensor([tokenizer.encode("Example input: ")], device='cuda')
outputs = model.generate(inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Collection including Bochkov/pro_bvv_zh