lit2vec-tldr-bart (DistilBART fine-tuned for chemistry TL;DRs)

lit2vec-tldr-bart is a DistilBART model fine-tuned on 19,992 CC-BY licensed chemistry abstracts to produce concise TL;DR-style summaries aligned with methods β†’ results β†’ significance. It’s designed for scientific abstractive summarization, semantic indexing, and knowledge-graph population in chemistry and related fields.


πŸ§ͺ Evaluation (held-out test)

Split ROUGE-1 ROUGE-2 ROUGE-Lsum
Test 56.11 30.78 45.43

Validation RLsum: 46.05
Metrics computed with evaluate's rouge (NLTK sentence segmentation, use_stemmer=True).


πŸš€ Quickstart

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, GenerationConfig

repo = "Bocklitz-Lab/lit2vec-tldr-bart"

tok = AutoTokenizer.from_pretrained(repo)
model = AutoModelForSeq2SeqLM.from_pretrained(repo)
gen = GenerationConfig.from_pretrained(repo)  # loads default decoding params

text = "Proton exchange membrane fuel cells convert chemical energy into electricity..."
inputs = tok(text, return_tensors="pt", truncation=True, max_length=1024)

summary_ids = model.generate(**inputs, **gen.to_dict())
print(tok.decode(summary_ids[0], skip_special_tokens=True))

Batch inference (PyTorch)

texts = [
  "Abstract 1 ...",
  "Abstract 2 ...",
]
batch = tok(texts, return_tensors="pt", padding=True, truncation=True, max_length=1024)
out = model.generate(**batch, **gen.to_dict())
summaries = tok.batch_decode(out, skip_special_tokens=True)

πŸ”§ Default decoding (saved in generation_config.json)

These are the defaults saved with the model (you can override at generate() time):

{
  "max_length": 142,
  "min_length": 56,
  "early_stopping": true,
  "num_beams": 4,
  "length_penalty": 2.0,
  "no_repeat_ngram_size": 3,
  "forced_bos_token_id": 0,
  "forced_eos_token_id": 2
}

πŸ“Š Training details

  • Base: sshleifer/distilbart-cnn-12-6 (Distilled BART)
  • Data: 19,992 CC-BY chemistry abstracts with TL;DR summaries
  • Splits: train=17,992 / val=999 / test=1,001
  • Max lengths: input 1024, target 128
  • Optimizer: AdamW, lr=2e-5
  • Batching: per-device train/eval batch size 4, gradient_accumulation_steps=4
  • Epochs: 5
  • Precision: fp16 (when CUDA available)
  • Hardware: single NVIDIA RTX 3090
  • Seed: 42
  • Libraries: πŸ€— Transformers + Datasets, evaluate for ROUGE, NLTK for sentence splitting

βœ… Intended use

  • TL;DR abstractive summaries for chemistry and adjacent domains (materials science, chemical engineering, environmental science).
  • Semantic indexing, IR reranking, and knowledge graph ingestion where concise method/result statements are helpful.

Limitations & risks

  • May hallucinate details not present in the abstract (typical for abstractive models).
  • Not a substitute for expert judgment; avoid using summaries as sole evidence for scientific claims.
  • Trained on CC-BY English abstracts; performance may degrade on other domains/languages.

πŸ“¦ Files

This repo should include:

  • config.json, pytorch_model.bin or model.safetensors
  • tokenizer.json, tokenizer_config.json, special_tokens_map.json, merges/vocab as applicable
  • generation_config.json (decoding defaults)

πŸ” Reproducibility

  • Dataset: Bocklitz-Lab/lit2vec-tldr-bart-dataset
  • Recommended preprocessing: truncate inputs at 1024 tokens; targets at 128.
  • ROUGE evaluation: evaluate.load("rouge"), NLTK sentence tokenization, use_stemmer=True.

πŸ“š Citation

If you use this model or dataset, please cite:

@software{lit2vec_tldr_bart_2025,
  title   = {lit2vec-tldr-bart: DistilBART fine-tuned for chemistry TL;DR summarization},
  author  = {Bocklitz Lab},
  year    = {2025},
  url     = {https://huggingface.co/Bocklitz-Lab/lit2vec-tldr-bart},
  note    = {Model trained on CC-BY chemistry abstracts; dataset at Bocklitz-Lab/lit2vec-tldr-bart-dataset}
}

Dataset:

@dataset{lit2vec_tldr_dataset_2025,
  title   = {Lit2Vec TL;DR Chemistry Dataset},
  author  = {Bocklitz Lab},
  year    = {2025},
  url     = {https://huggingface.co/datasets/Bocklitz-Lab/lit2vec-tldr-bart-dataset}
}

πŸ“ License

  • Model weights & code: Apache-2.0
  • Dataset: CC BY 4.0 (attribution in per-record metadata)

πŸ™Œ Acknowledgements

  • Base model: DistilBART (sshleifer/distilbart-cnn-12-6)
  • Licensing and OA links curated from publisher/aggregator sources; dataset restricted to CC-BY content.
Downloads last month
25
Safetensors
Model size
306M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train Bocklitz-Lab/lit2vec-tldr-bart-model

Space using Bocklitz-Lab/lit2vec-tldr-bart-model 1

Evaluation results