metadata
license: cc-by-nc-4.0
datasets:
- BramVanroy/alpaca-cleaned-dutch
model-index:
- name: falcon-7b-ft-alpaca-cleaned-dutch
results: []
falcon-7b-ft-alpaca-cleaned-dutch
This model is a fine-tuned version of ybelkada/falcon-7b-sharded-bf16 on the BramVanroy/alpaca-cleaned-dutch dataset. It achieves the following results on the evaluation set:
- Loss: 1.5448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.9832 | 0.03 | 10 | 1.8889 |
1.9355 | 0.05 | 20 | 1.8834 |
1.9694 | 0.08 | 30 | 1.8671 |
1.9048 | 0.1 | 40 | 1.8328 |
1.8443 | 0.13 | 50 | 1.7970 |
1.7448 | 0.16 | 60 | 1.7711 |
1.8004 | 0.18 | 70 | 1.7522 |
1.7767 | 0.21 | 80 | 1.7370 |
1.7733 | 0.23 | 90 | 1.7248 |
1.7926 | 0.26 | 100 | 1.7149 |
1.8258 | 0.29 | 110 | 1.7066 |
1.6709 | 0.31 | 120 | 1.6993 |
1.6612 | 0.34 | 130 | 1.6926 |
1.8463 | 0.36 | 140 | 1.6867 |
1.8413 | 0.39 | 150 | 1.6814 |
1.7659 | 0.42 | 160 | 1.6765 |
1.69 | 0.44 | 170 | 1.6715 |
1.7219 | 0.47 | 180 | 1.6673 |
1.6755 | 0.49 | 190 | 1.6627 |
1.7823 | 0.52 | 200 | 1.6584 |
1.7635 | 0.55 | 210 | 1.6545 |
1.7335 | 0.57 | 220 | 1.6506 |
1.7272 | 0.6 | 230 | 1.6471 |
1.718 | 0.63 | 240 | 1.6436 |
1.6899 | 0.65 | 250 | 1.6403 |
1.622 | 0.68 | 260 | 1.6370 |
1.6556 | 0.7 | 270 | 1.6337 |
1.7912 | 0.73 | 280 | 1.6304 |
1.6025 | 0.76 | 290 | 1.6274 |
1.7181 | 0.78 | 300 | 1.6246 |
1.7452 | 0.81 | 310 | 1.6217 |
1.5975 | 0.83 | 320 | 1.6189 |
1.5754 | 0.86 | 330 | 1.6162 |
1.7077 | 0.89 | 340 | 1.6136 |
1.5848 | 0.91 | 350 | 1.6112 |
1.7011 | 0.94 | 360 | 1.6087 |
1.6697 | 0.96 | 370 | 1.6065 |
1.6633 | 0.99 | 380 | 1.6042 |
1.6722 | 1.02 | 390 | 1.6015 |
1.7181 | 1.04 | 400 | 1.5993 |
1.6414 | 1.07 | 410 | 1.5972 |
1.6856 | 1.09 | 420 | 1.5952 |
1.6491 | 1.12 | 430 | 1.5930 |
1.6736 | 1.15 | 440 | 1.5912 |
1.619 | 1.17 | 450 | 1.5893 |
1.6452 | 1.2 | 460 | 1.5870 |
1.6498 | 1.22 | 470 | 1.5854 |
1.675 | 1.25 | 480 | 1.5839 |
1.684 | 1.28 | 490 | 1.5823 |
1.6379 | 1.3 | 500 | 1.5802 |
1.5173 | 1.33 | 510 | 1.5786 |
1.6443 | 1.35 | 520 | 1.5773 |
1.5628 | 1.38 | 530 | 1.5755 |
1.7287 | 1.41 | 540 | 1.5738 |
1.5615 | 1.43 | 550 | 1.5725 |
1.6129 | 1.46 | 560 | 1.5712 |
1.6709 | 1.48 | 570 | 1.5700 |
1.5818 | 1.51 | 580 | 1.5683 |
1.6358 | 1.54 | 590 | 1.5672 |
1.6513 | 1.56 | 600 | 1.5662 |
1.5637 | 1.59 | 610 | 1.5654 |
1.612 | 1.62 | 620 | 1.5643 |
1.6396 | 1.64 | 630 | 1.5630 |
1.6414 | 1.67 | 640 | 1.5620 |
1.6096 | 1.69 | 650 | 1.5611 |
1.6149 | 1.72 | 660 | 1.5603 |
1.5886 | 1.75 | 670 | 1.5593 |
1.537 | 1.77 | 680 | 1.5582 |
1.5883 | 1.8 | 690 | 1.5574 |
1.6512 | 1.82 | 700 | 1.5566 |
1.683 | 1.85 | 710 | 1.5559 |
1.7059 | 1.88 | 720 | 1.5549 |
1.5453 | 1.9 | 730 | 1.5542 |
1.5738 | 1.93 | 740 | 1.5536 |
1.6004 | 1.95 | 750 | 1.5530 |
1.6753 | 1.98 | 760 | 1.5523 |
1.6362 | 2.01 | 770 | 1.5517 |
1.5805 | 2.03 | 780 | 1.5511 |
1.6416 | 2.06 | 790 | 1.5508 |
1.5755 | 2.08 | 800 | 1.5506 |
1.5763 | 2.11 | 810 | 1.5501 |
1.7112 | 2.14 | 820 | 1.5497 |
1.6533 | 2.16 | 830 | 1.5493 |
1.6008 | 2.19 | 840 | 1.5489 |
1.5731 | 2.21 | 850 | 1.5485 |
1.4975 | 2.24 | 860 | 1.5480 |
1.6158 | 2.27 | 870 | 1.5478 |
1.6063 | 2.29 | 880 | 1.5474 |
1.628 | 2.32 | 890 | 1.5470 |
1.6177 | 2.34 | 900 | 1.5468 |
1.5646 | 2.37 | 910 | 1.5467 |
1.5272 | 2.4 | 920 | 1.5466 |
1.5402 | 2.42 | 930 | 1.5464 |
1.5815 | 2.45 | 940 | 1.5461 |
1.4857 | 2.47 | 950 | 1.5459 |
1.5923 | 2.5 | 960 | 1.5458 |
1.6167 | 2.53 | 970 | 1.5456 |
1.7214 | 2.55 | 980 | 1.5456 |
1.5467 | 2.58 | 990 | 1.5455 |
1.6455 | 2.61 | 1000 | 1.5453 |
1.6137 | 2.63 | 1010 | 1.5453 |
1.6104 | 2.66 | 1020 | 1.5453 |
1.6756 | 2.68 | 1030 | 1.5451 |
1.5818 | 2.71 | 1040 | 1.5450 |
1.5829 | 2.74 | 1050 | 1.5450 |
1.5753 | 2.76 | 1060 | 1.5450 |
1.6484 | 2.79 | 1070 | 1.5450 |
1.6765 | 2.81 | 1080 | 1.5450 |
1.623 | 2.84 | 1090 | 1.5449 |
1.6901 | 2.87 | 1100 | 1.5449 |
1.6601 | 2.89 | 1110 | 1.5449 |
1.6763 | 2.92 | 1120 | 1.5449 |
1.6203 | 2.94 | 1130 | 1.5449 |
1.5113 | 2.97 | 1140 | 1.5448 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3