BramVanroy's picture
init model
227a3af
|
raw
history blame
7.29 kB
metadata
license: cc-by-nc-4.0
datasets:
  - BramVanroy/alpaca-cleaned-dutch
model-index:
  - name: falcon-7b-ft-alpaca-cleaned-dutch
    results: []

falcon-7b-ft-alpaca-cleaned-dutch

This model is a fine-tuned version of ybelkada/falcon-7b-sharded-bf16 on the BramVanroy/alpaca-cleaned-dutch dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.9832 0.03 10 1.8889
1.9355 0.05 20 1.8834
1.9694 0.08 30 1.8671
1.9048 0.1 40 1.8328
1.8443 0.13 50 1.7970
1.7448 0.16 60 1.7711
1.8004 0.18 70 1.7522
1.7767 0.21 80 1.7370
1.7733 0.23 90 1.7248
1.7926 0.26 100 1.7149
1.8258 0.29 110 1.7066
1.6709 0.31 120 1.6993
1.6612 0.34 130 1.6926
1.8463 0.36 140 1.6867
1.8413 0.39 150 1.6814
1.7659 0.42 160 1.6765
1.69 0.44 170 1.6715
1.7219 0.47 180 1.6673
1.6755 0.49 190 1.6627
1.7823 0.52 200 1.6584
1.7635 0.55 210 1.6545
1.7335 0.57 220 1.6506
1.7272 0.6 230 1.6471
1.718 0.63 240 1.6436
1.6899 0.65 250 1.6403
1.622 0.68 260 1.6370
1.6556 0.7 270 1.6337
1.7912 0.73 280 1.6304
1.6025 0.76 290 1.6274
1.7181 0.78 300 1.6246
1.7452 0.81 310 1.6217
1.5975 0.83 320 1.6189
1.5754 0.86 330 1.6162
1.7077 0.89 340 1.6136
1.5848 0.91 350 1.6112
1.7011 0.94 360 1.6087
1.6697 0.96 370 1.6065
1.6633 0.99 380 1.6042
1.6722 1.02 390 1.6015
1.7181 1.04 400 1.5993
1.6414 1.07 410 1.5972
1.6856 1.09 420 1.5952
1.6491 1.12 430 1.5930
1.6736 1.15 440 1.5912
1.619 1.17 450 1.5893
1.6452 1.2 460 1.5870
1.6498 1.22 470 1.5854
1.675 1.25 480 1.5839
1.684 1.28 490 1.5823
1.6379 1.3 500 1.5802
1.5173 1.33 510 1.5786
1.6443 1.35 520 1.5773
1.5628 1.38 530 1.5755
1.7287 1.41 540 1.5738
1.5615 1.43 550 1.5725
1.6129 1.46 560 1.5712
1.6709 1.48 570 1.5700
1.5818 1.51 580 1.5683
1.6358 1.54 590 1.5672
1.6513 1.56 600 1.5662
1.5637 1.59 610 1.5654
1.612 1.62 620 1.5643
1.6396 1.64 630 1.5630
1.6414 1.67 640 1.5620
1.6096 1.69 650 1.5611
1.6149 1.72 660 1.5603
1.5886 1.75 670 1.5593
1.537 1.77 680 1.5582
1.5883 1.8 690 1.5574
1.6512 1.82 700 1.5566
1.683 1.85 710 1.5559
1.7059 1.88 720 1.5549
1.5453 1.9 730 1.5542
1.5738 1.93 740 1.5536
1.6004 1.95 750 1.5530
1.6753 1.98 760 1.5523
1.6362 2.01 770 1.5517
1.5805 2.03 780 1.5511
1.6416 2.06 790 1.5508
1.5755 2.08 800 1.5506
1.5763 2.11 810 1.5501
1.7112 2.14 820 1.5497
1.6533 2.16 830 1.5493
1.6008 2.19 840 1.5489
1.5731 2.21 850 1.5485
1.4975 2.24 860 1.5480
1.6158 2.27 870 1.5478
1.6063 2.29 880 1.5474
1.628 2.32 890 1.5470
1.6177 2.34 900 1.5468
1.5646 2.37 910 1.5467
1.5272 2.4 920 1.5466
1.5402 2.42 930 1.5464
1.5815 2.45 940 1.5461
1.4857 2.47 950 1.5459
1.5923 2.5 960 1.5458
1.6167 2.53 970 1.5456
1.7214 2.55 980 1.5456
1.5467 2.58 990 1.5455
1.6455 2.61 1000 1.5453
1.6137 2.63 1010 1.5453
1.6104 2.66 1020 1.5453
1.6756 2.68 1030 1.5451
1.5818 2.71 1040 1.5450
1.5829 2.74 1050 1.5450
1.5753 2.76 1060 1.5450
1.6484 2.79 1070 1.5450
1.6765 2.81 1080 1.5450
1.623 2.84 1090 1.5449
1.6901 2.87 1100 1.5449
1.6601 2.89 1110 1.5449
1.6763 2.92 1120 1.5449
1.6203 2.94 1130 1.5449
1.5113 2.97 1140 1.5448

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3