Cloud Detection — SegFormer (MiT-B4 encoder, RGB)
Repository: Burdenthrive/cloud-detection-segformer-mit-b4
Task: Multiclass semantic segmentation (4 classes) on Sentinel‑2 L1C RGB (3 bands) using SegFormer (segmentation_models_pytorch
) with MiT‑B4 encoder.
This model predicts per‑pixel labels among: clear, thick cloud, thin cloud, cloud shadow.
✨ Highlights
- Input: Sentinel‑2 L1C RGB tiles/patches (float32, shape
B×3×512×512
, bands B04‑B03‑B02). - Backbone:
mit_b4
(MiT encoder viasegmentation_models_pytorch
). - Output: Logits
B×4×512×512
(apply softmax + argmax). - Files:
model.py
,config.json
, and weights.
📦 Files
model.py
— defines theSegFormer
class (wrapper aroundsmp.Segformer
).config.json
— hyperparameters and class names:{ "task": "image-segmentation", "model_name": "segformer-mit-b4", "model_kwargs": { "encoder_name": "mit_b4", "encoder_weights": "imagenet", "in_channels": 3, "num_classes": 4, "freeze_encoder": false }, "classes": ["clear", "thick cloud", "thin cloud", "cloud shadow"], "id2label": { "0": "clear", "1": "thick cloud", "2": "thin cloud", "3": "cloud shadow" }, "label2id": { "clear": 0, "thick cloud": 1, "thin cloud": 2, "cloud shadow": 3 }, "input_bands": ["B04", "B03", "B02"] }
- Downloads last month
- 25